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Abstract—Due to its high societal impact, deepfake detection is
getting active attention in the computer vision community. Most
deepfake detection methods rely on identity, facial attributes, and
adversarial perturbation-based spatio-temporal modifications at
the whole video or random locations while keeping the meaning of
the content intact. However, a sophisticated deepfake may contain
only a small segment of video/audio manipulation, through which
the meaning of the content can be, for example, completely
inverted from a sentiment perspective. We introduce a content-
driven audio-visual deepfake dataset, termed Localized Audio
Visual DeepFake (LAV-DF), explicitly designed for the task of
learning temporal forgery localization. Specifically, the content-
driven audio-visual manipulations are performed strategically
to change the sentiment polarity of the whole video. Our
baseline method for benchmarking the proposed dataset is a
3DCNN model, termed as Boundary Aware Temporal Forgery
Detection (BA-TFD), which is guided via contrastive, boundary
matching, and frame classification loss functions. Our extensive
quantitative and qualitative analysis demonstrates the proposed
method’s strong performance for temporal forgery localization
and deepfake detection tasks.

I. INTRODUCTION

Advances in computer vision and deep learning meth-
ods (e.g. Autoencoders [!] and Generative Adversarial Net-
works [2]) have enabled the creation of very realistic fake
videos, known as deepfakes'. There are various ways of
creating deepfakes, including voice cloning [3], [4], face reen-
actment [5], [6], and face swapping [7], [8]. Highly realistic
deepfakes are a potential tool for spreading harmful misinfor-
mation, given our increasing online presence. This success in
generating high-quality deepfakes has raised serious concerns
about their role in shaping people’s beliefs, with some scholars
suggesting that deepfakes are a “threat to democracy” [Y],
[10], [11], [12]. As an example of the potentially harmful
effect of deepfakes, consider the recent work [13] that uses
a video of the former United States President Barack Obama
to showcase a novel face reenactment method. In this work,
the lip movements of Barack Obama are synchronized with
another person’s speech, resulting in high quality and realistic
video in which the former president appears to say something
he never did. Given the recent surge in synthesized fake video
content on the Internet, it has become increasingly important
to identify deepfakes with more accurate and reliable methods.

Un the text, deepfake and forgery are used interchangeably.

Real Real Real Real Fake Fake

"Vaccinations are safe!" "Vaccinations are dangerous!"

Sentiment Score: (.44 Sentiment Score: -0.48
Real Video Fake Video

Fig. 1: Content-driven audio-visual manipulation. On the left is a real video
with the subject saying “Vaccinations are safe”. On the right is an audio-
visual deepfake created from the real video based on the change in perceived
sentiment where “safe” is changed to “dangerous”. Green-edge and red-edge
images are real and fake frames, respectively. Through subtle audio-visual
manipulation, the whole meaning of the video content has changed.

This has led to the release of several benchmark datasets [14],
[15], [16] and methods [17] for fake content detection. These
fake video detection methods aim to correctly classify any
given input video as either real or fake. This suggests that
the major assumption behind those datasets and methods is
that fake content is present in the entirety of the video/audio
signal; that is, there is some form of manipulation throughout
the content. And current state-of-the-art deepfake detection
methods [18], [19], [20] achieve impressive results on this
problem using the largest benchmark datasets.

However, fake content might constitute only a small part of
an otherwise long real video, as was initially suggested in [28].
Such short modified segments have the power to alter the
meaning and sentiment of the original content completely. For
example, consider the manipulation illustrated in Figure 1. The
real video might represent a person saying ‘“Vaccinations are
safe”, while the fake includes only a short modified segment;
for example, “safe” is replaced with “dangerous”. Hence, the
meaning and sentiment of the fake video differ significantly
from the real one. If done precisely, this type of coordinated
manipulation can sway public opinion (e.g. when employed for
media of a famous person as the example with Barack Obama)
in a particular direction, for example, based on target sentiment
polarity. Given the discussed central assumption behind current
datasets and methods, the state-of-the-art deepfake detectors
might not perform well on this type of manipulation.

This paper tackles the important task of detecting content
altering fake segments in videos. The literature review on
benchmark datasets for deepfake detection indicates that there
is no dataset suitable for this task, that is, a dataset that
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TABLE I: Comparison of the proposed dataset with other publicly available deepfake datasets. Cla: Classification, SL:
Spatial Localization, TFL: Temporal Forgery Localization, FS: Face Swapping, and RE: ReEnactment.

Dataset Year Tasks Manipulated Manipulation #Subjects | #Real #Fake #Total
Modality Method

DF-TIMIT [14] 2018 Cla \Y FS 43 320 640 960
UADFV [21] 2019 Cla v FS 49 49 49 98
FaceForensics++ [15] | 2019 Cla v FS/RE - 1,000 4,000 5,000
Google DFD [22] 2019 Cla \% FS - 363 3,068 3,431
DFDC [16] 2020 Cla AV FS 960 23,654 | 104,500 128,154
DeeperForensics [23] 2020 Cla \ FS 100 50,000 10,000 60,000
Celeb-DF [24] 2020 Cla v FS 59 590 5,639 6,229
WildDeepfake [25] 2021 Cla - - - 3,805 3,509 7,314
FakeAVCeleb [26] 2021 Cla AV RE 600+ 570 25,000+ | 25,500+
ForgeryNet [27] 2021 | SL/TFL/Cla \Y Random FS/RE 5400+ 99,630 | 121,617 221,247
LAV-DF (Ours) 2022 TFL/Cla AV Content-driven RE 153 36,431 99,873 136,304

consists of content-driven manipulations. Therefore, this paper
describes the process of creating such a large-scale dataset
that will enable further research in this important direction. In
addition, we propose a novel multimodal method for precisely
predicting the boundaries of fake segments based on visual and
audio information. The main contributions of our work are
as follows,

1) We introduce a new large-scale public audio-visual
dataset called Localized Audio Visual DeepFake.

2) We propose a new multimodal method called Boundary
Aware Temporal Forgery Detection.

II. RELATED WORK

Deepfake Datasets. The body of research in deepfake de-
tection is driven by seminal datasets curated with different
manipulation methods. A summary of the relevant datasets is
presented in Table I. Korshunov and Marcel [14] curated one
of the first deepfake datasets, DF-TIMIT, where face-swapping
was performed on VidTimit [29]. Down the lane, other impor-
tant datasets such as UADFV [30], FaceForensics++ [15], and
Google DFD [22] were introduced. Due to the complexity
of face manipulation and limited availability of open-source
face manipulation techniques, these datasets are fairly small in
size [24]. Facebook released a large-scale dataset DFDC [16]
in 2020 for the task of deepfake classification. Multiple face
manipulation methods generated 128,154 videos, including
real videos of 3000 actors. DFDC has become a mainstream
benchmark dataset for the task of deepfake detection. With the
progress in both audio and visual deepfake manipulation, post
DFDC, several new datasets including Celeb-DF [24], Deep-
erForensics [23], and WildDeepFake [25] were introduced. All
these datasets are designed for the binary task of deepfake clas-
sification and focus primarily on visual manipulation detec-
tion [28]. In 2021, OpenForensics [31] dataset was introduced
for spatial detection, segmentation and classification. Recently,
FakeAVCeleb [26] was released, focusing on both face-swap
and face-reenactment methods with manipulated audio and
video. ForgeryNet[27] is the latest contribution to the growing
list of deepfake detection datasets. This large-scale dataset
is also centered around video-only identity manipulation and
is suitable for video/image classification and spatial/temporal
forgery localization tasks.

All previous datasets provide face manipulations that occur
in most of the frames of the video [28]. Only the latest

one, ForgeryNet, provides examples of the important problem
of temporal forgery localization since it includes random
face-swapping applied to parts of some videos. However,
the manipulations present in that dataset are only identity
modifications that do not necessarily alter the meaning of
the content. Our content-driven manipulation dataset addresses
this important gap.

Deepfake Detection. Deepfake detection methods draw in-
spiration from observations of artifacts such as different eye
colors and unnatural blink and lip-sync issues in deepfake
videos. These binary classification approaches are based on
both traditional machine learning methods (e.g. EM [32] and
SVM [21]) and deep learning methods (e.g. 3DCNNI[33],
GRU[34] and ViT [20], [19], [18]). Previous methods [35],
[36] also aim to detect temporal inconsistencies in deepfake
content and recently, several audio-visual deepfake detection
methods such as MDS [28] and M2TR [37] were proposed.
The methods above are classification centric and do not focus
on temporal localization. The only exception is the MDS,
shown to work for localization tasks, however, the method
is designed primarily for classification. The proposed dataset
and method are specifically designed for temporal localization
of manipulations.

Temporal Localization. Given that the task of temporal
forgery localization is similar to the task of temporal action
localization, previous work in this area is important. Bench-
mark datasets in this domain include THUMOS [38] and
ActivityNet [39] and the proposed methods can be grouped
into two categories: 2-step approaches which first generate
segment proposals and then perform multi-class classification
to evaluate the proposals [40], [41], [42] and 1-step approaches
which directly generate the final segment predictions [43],
[44], [45]. For temporal forgery localization, there are no
classification requirements for the foreground segments; the
background is always real, and the foreground segments are
always fake. Therefore, boundary prediction and 1-step ap-
proaches are more relevant for our task. Bagchi et al. [46]
divided the approaches to segment proposal estimation in
temporal action localization into two main categories: meth-
ods based on anchors and methods based on predicting the
boundary probabilities. As for the anchor-based, these methods
mainly use sliding windows in the video, such as S-CNN [47],
CDC [48], TURN-TAP [49] and CTAP [50]. As for the
methods predicting the boundary probabilities, Lin et al. [51]
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Fig. 2: Generation pipeline of the proposed dataset. The green-edge audio and video frames are the real data, and the red-edge audio and video frames are
the generated fake data. The real audio-based transcript is used to decide the location and content to be replaced based on the largest change in sentiment. The
chosen antonyms are used as input for generating fake audio with voice cloning. The post-processing and normalization are applied to the audio to maintain
the consistency of the loudness between the generated audio and real audio in the neighborhood. The generated audio is used as input for facial reenactment.
Three categories of data are generated: I. Fake Audio and Fake Video, 1. Fake Audio and Real Video and Ill. Real Audio and Fake Video. The details on

dataset generation are discussed in Section III.

introduced BSN. The method can utilize the global information
to overcome the problem that anchor-based methods cannot
generate precise and flexible segment proposals. Based on
BSN, BMN [52] and BSN++ [53] were introduced for im-
proved performance. It is worth noting that all these methods
are unimodal, which is not optimal for the task of temporal
forgery localization. The importance of multimodality was
demonstrated recently by AVFusion [46].

Proposed Approach. For the task of temporal forgery local-
ization, both the audio and visual information are important,
in addition to the required precise boundary proposals. In this
paper, we introduce a multimodal method based on boundary
probabilities and compare its performance with BMN [52],
AGT [45], MDS [28] and AVFusion [40].

III. PROPOSED DATASET

The proposed dataset Localized Audio Visual DeepFake

(LAV-DF) is a large audio-visual deepfake dataset. The main
steps in creating the dataset are 1) Sourcing the real videos,
2) Processing the real videos to manipulate their transcripts,
and 3) Audio and video synthesis. The deepfake generation
is based on the hypothesis that changing relevant words in
a transcript can lead to a change in its perception, and in
particular, this can be accomplished by changing the sentiment
of the transcript. Therefore, the manipulation strategy is to
replace strategic words with their antonyms, which leads to a
significant change in the sentiment of the statement. The data
generation pipeline is illustrated in Figure 2.
Data Sourcing. The real videos are sourced from the Vox-
Celeb2 [54] dataset, a facial video dataset with over 1 million
utterance videos of over 6000 speakers. The faces in the videos
are tracked and cropped with the facial detector in [55] at
224 x 224 resolution. The original dataset contains videos with
different duration, spoken language, and voice loudness. Only
English-speaking videos are chosen using the confidence score
from the Google Speech-to-Text service. The same service
generates the transcripts, which are used for manipulation.

A. Data Generation

Transcript Manipulation. After sourcing the real videos, the
next step is to analyse a video’s transcript denoted by D =
{do,d1, -+ ,dm, -+ ,d,}, where d; denotes word tokens and
n is the number of tokens. The aim is to find the tokens to be

replaced in D such that the sentiment of the transcript changes
the most. In other words, to goal is to create a transcript D’
{do,dy,---,d},,--- ,d,}, composed of most of the tokens
of D with the exception of a few tokens being replaced. The
replacement token d, is selected from a set d,,, of antonyms of
d.,- The sentiment analyzer in NLTK [56] is used to estimate
the sentiment value S(D) of a transcript. For each token d;

in a transcript D, we find the replacement as follows,

7= argmax |S(D)— S(D’)]
d;eD,d}ed;

We find all the replacements in a transcript D as follows,

M
0 = argmax | Z AS(1)|

{Tm}%:l i=1

where AS(7;) is the sentiment difference with the replacement
7; and M is the maximum number of replacements in the
transcript. For videos shorter than 10 seconds, there is up
to 1 replacement; otherwise, there are up to 2 replacements.
Figure 3 (a) illustrates the change in sentiment distribution
after the manipulations and Figure 3 (b) presents the histogram
of |AS|, suggesting that the sentiment of most transcripts was
successfully changed.

Audio Generation. The next step is to generate the corre-
sponding audio in the speaker’s style. Several recent adap-
tive text-to-speech (TTS) methods [4], [57], [58] which can
generate the speech style of a person who is not in the
training dataset were evaluated. Based on the better per-
formance, SV2TTS [4] is chosen as the final method for
audio generation. The SV2TTS comprises three modules 1)
An encoder for extracting style embedding of the reference
speaker, 2) Tacotron 2 [59] based spectrogram generated using
the replacement tokens and the speaker style embedding, and
3) WaveNet [60] based vocoder for generating realistic audio
using the spectrogram. The pre-trained SV2TTS is used for
generating the fake audio segments which are later loudness
normalized using the corresponding real audio neighbors.
Video Generation. The generated fake audio is used as an
input for generating the corresponding fake video frames.
Wav2Lip [6] facial reenactment is used for this task as it has
been shown to have better output quality than previous meth-
ods [61], [62], and has better generalization and robustness
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to unseen scenarios. It is worth noting that newer methods
that achieve better video synthesis quality are not suitable
for our task. For example, AD-NeRF [63] is not designed for
zero-shot generation of unseen identities, and ATVGNet [64]
reenacts the face based on a static reference image, which
causes pose inconsistencies on the boundary between fake
and real segments. Wav2Lip takes a reference video and target
audio as input, generating an output video in which the person
in the reference video speaks the target audio content with
synced lips. The pre-trained Wav2Lip model is used and the
generated fake video segments are up-scaled to a resolution of
224 x 224. In the final step, the generated fake audio and video
segments are synchronized and used to replace the original
audio and video segments.

Similar to [65] the proposed dataset includes three variations
of deepfake data,

1) Fake Audio and Fake Video. The audio and correspond-
ing video are generated for replacement tokens.

2) Fake Audio and Real Video. Only the audio is generated
for replacement tokens and the corresponding real video
is length-normalized.

3) Real Audio and Fake Video. Only the video is generated
for replacement tokens and the length of the fake video
is normalized to match the real audio.

B. Dataset Statistics

The dataset contains 136,304 videos, of which 36,431
are completely real, and 99,873 have fake segments, with

153 unique identities. We split the dataset into 3 identity-
independent subsets for training (78703 videos of 91 iden-
tities), validation (31501 videos of 31 identities), and testing
(26100 videos of 31 identities). The summary of the dataset
is shown in Figure 3. The total number of fake segments is
114,253, with duration in the range [0-1.6] seconds and an
average length of 0.65 seconds, where 89.26% of the segments
are shorter than 1 second. The maximum video length is 20
seconds, and 69.61% of the videos are shorter than 10 seconds.
As for the modality modification types, the amount of the
4 types (i.e. video-modified, audio-modified, both-modified,
real) is approximately equal. In most videos (62.72%), there
is 1 fake segment, and in some videos (10.55%), there are 2.

IV. PROPOSED METHOD

The proposed method called Boundary Aware Temporal
Forgery Detection (BA-TFD) is illustrated in Figure 4. The
first step of the method is to extract features from the input
data X = {V, A}, where V is the video and A is the audio.

A. Feature Encoders

Video Encoder. The goal of the video encoder is to learn
frame-level spatio-temporal features from the input video V'
using a 3DCNN. For that purpose, we designed the video en-
coder E, to take the whole video V € REXT*HXW aq input,
where T is the number of frames, C' is the number of channels,
and H and W are the height and width of the frame. The
output of the F, are the frame-level features F, € REr*T,
where Cy is the features dimension. F, is composed of 4
blocks, each containing multiple 3D convolutional layers with
kernel size 3 x 3 x 3 and a final max-pooling layer.

Audio Encoder. The goal of the audio encoder is to learn
features from the input audio A using a 2DCNN. In addition,
the learned audio features are temporarily aligned with the
learned video frame-level video features. The first step is to
generate the spectrogram A’ € RF»*Te of the audio signal in
log-space, where Ty, is the temporal dimension, and F,, is the
length of mel-frequency cepstrum features. In the second step,
we designed the audio encoder F, to take the spectrogram A’
as input. The output of the E, are the audio frame features
F, € RY*T where Cy is the features dimension. E, is
composed of multiple 2D convolutional layers with kernel size
3 x 3 and a final max-pooling layer to reduce the temporal
dimension 71, to 7.

B. Loss Functions

Contrastive Loss. We hypothesize that content modification
in one or more modalities will result in miss-synchronization
between the modalities (i.e. video and audio), and contrastive
loss has been shown [66], [28] to be a powerful objective for
similar tasks. Our method uses the audio and video features
learned from real videos as positive pairs. The audio and
video features learned from videos with at least one modified
modality are considered negative pairs. For the positive pairs,
the contrastive loss minimizes the difference between the
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components of the method are discussed in Section IV.

modalities, while for negative pairs, the contrastive loss keeps
that margin larger than §,

1
Le=
NCyT

Zyld + (1 — y;) max(8 — d;,0)?

ai||2

d; = ||Fyi — F,

Frame Classification Loss. Since we have access to the
frame-level features F, and F,, we utilize the labels and
train the encoders to extract powerful and robust features
that capture different deepfake artifacts. For that purpose, we
designed two frame-level logistic regression classifiers F'C,,
and F'C, using F, and F, as input. The classifiers consist of
1D convolutional layers and predict the label Y as real or fake
for each frame and each modality. The classifiers are trained
with cross-entropy loss,

Lf: 2NT Z ZZH Ym2]7Ym1J)

mée{a,v} i=1 j=t
H(Y,Y)=YlogY +(1-Y)log(1-Y)
Yoo =Y + (1 —nm)Yo

where NN is the number of samples in the dataset, T' is the
number of frames, m is the modality (i.e. audio a or video v),
m specifies whether modality m is modified, and Yj is the
label for real videos.

Boundary Matching Loss. The ground truth boundary maps
are generated following the procedure in [52]. Given the
fusion boundary map M, video boundary map M, and audio
boundary map M, predicted by the model we use mean
squared error as boundary matching loss for M, M, and M,.
The fusion boundary matching loss is,

N D T

Ly = NDTZZZ ik

i=1 j=1 k=1

zgk)z

where, N is the number of samples in the dataset, D is the
number of all possible proposal durations and 7" is the number
of frames. The modality boundary matching loss is similar to
the frame classification loss,

1 N D T R
T O 22 D (Mmijk
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Fig. 5: Structure of the fusion module. The gray block normalizes the
video and audio weights predicted from the 1D convolutional layers and
applies element-wise weighted average. & denotes element-wise addition and
® denotes element-wise multiplication. BM: boundary map.

where, m is the modality (i.e. video v or audio a), n,,, specifies
whether modality m is modified, and M, is the ground truth
boundary map for real videos.

Overall Loss. The overall loss is defined as follows,

L=XL.+ )\fo + XMLy + MomLom
where, A¢, A\, A\p and Ay, are weights for different losses.

C. Multimodal Fusion

The predictions of F'C, and F'C, are concatenated with the
features F), and F,, and used by two boundary matching layers
B, and B, [52]. The goal is to predict the boundary maps
M, € RPXT and M, € RP*T for the video and audio, where
T is the number of frames and D is the maximum duration of
the fake segments. The fusion module, illustrated in Figure 5,
uses the MU, Ma, F, and F, as input. For the video modality,
the Mv, F, and F, are used to calculate the video weights
W, € RPXT and for the audio modality, the M,, F, and
F, are used to calculate the audio weights W, € RP>*7T In
the final step, we perform element-wise weighted average and
calculate the fusion boundary map prediction M e RP*T,

X7 — W, M, + W, M,
W+ W,

where all operations are element-wise.

D. Inference

During inference, the model uses the vids:o and audio as
input and generates a fusion boundary map M. The boundary
map represents the confidence for all proposals in the video
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TABLE II: Temporal forgery localization results on the full set (see Section V for details) of the proposed dataset. The
visual-only version of the proposed method uses the output from the video boundary matching layer (see Figure 4 for details),

showing the performance when using only the video modality.

[ Method [ AP@0.5 | AP@0.75 | AP@0.95 | AR@100 | AR@50 [ AR@20 [ AR@10 |
MDS [28] 12.78 01.62 00.00 37.88 36.71 34.39 32.15
AGT [45] 17.85 09.42 00.11 43.15 34.23 24.59 16.71
BMN [52] 24.01 07.61 00.07 53.26 41.24 31.60 26.93
BMN (I3D) 10.56 01.66 00.00 48.49 44.39 37.13 31.55
AVFusion [46] 65.38 23.89 00.11 62.98 59.26 54.80 52.11
BA-TFD (visual-only) (Ours) 58.55 28.60 00.16 62.49 58.77 53.86 50.29
BA-TFD (multimodal) (Ours) 76.90 38.50 00.25 66.90 64.08 60.77 58.42

TABLE III: Temporal forgery localization results on the subset (see Section V for details) of the proposed dataset. The
visual-only version of the proposed method uses the output from the video boundary matching layer (see Figure 4 for details),

showing the performance when using only the video modality.

[ Method [ AP@0.5 | AP@0.75 | AP@0.95 | AR@100 | AR@50 | AR@20 [ AR@I0 |
MDS [25] 23.43 03.48 00.00 58.53 56.68 53.16 49.67
AGT [45] 15.69 10.69 00.15 49.11 40.31 31.70 23.13
BMN [52] 32.32 11.38 00.14 59.69 48.17 39.01 34.17
BMN (I3D) 28.10 05.47 00.01 55.49 54.44 52.14 47.72
AVFusion [46] 62.01 22.77 00.11 61.98 58.08 53.31 50.52
BA-TFD (visual-only) (Ours) 83.55 41.88 00.24 65.79 62.30 57.95 55.34
BA-TFD (multimodal) (Ours) 85.20 47.06 00.29 67.34 64.52 61.19 59.32

and is very dense (i.e. there are many duplicated proposals).
Similar to BSN [51], we utilize post-processing with Soft
Non-Maximum Suppression (S-NMS) [67] to eliminate the
duplicated proposals.

V. EXPERIMENTS

We have performed extensive benchmarking of the pro-
posed dataset via several state-of-the-art methods including,
BMN [52], AGT [45], AVFusion [46], and MDS [28]. Apart
from our proposed dataset, we also validate our method for
classification on DFDC [16] dataset.

Dataset Preparation and Evaluation Protocol. To compare
with visual-only methods, we prepare a subset of the test
set where the audio-only modified data is removed which is
denoted as subset. The original test set is denoted as full
set in the experiments. Unlike temporal action localization
methods [42], [45] that are using only average precision,
we follow the protocol proposed in ForgeryNet [27] and use
both average precision (AP) and average recall (AR) as the
evaluation metrics for the quantitative comparison. For AP,
we follow the protocol of ActivityNet [39] to set the IoU
thresholds to 0.5, 0.75 and 0.95. For AR, as the number of fake
segments is small, we set the number of proposals to 100, 50,
20 and 10 with the IoU thresholds [0.5:0.05:0.95]. Our method
can also be used for deepfake detection (i.e. classification)
task. We use area under the curve (AUC) for evaluation of the
deepfake classification.

Implementation Details. The proposed method is imple-
mented in PyTorch [68]. For hyperparameters, we set A\, = 0.1,
A =2, %=1, Apm =1 and § = 0.99. For comparison, we
trained BMN [52], AGT [45], AVFusion [46] and MDS [28]
for temporal forgery localization task. In addition, to evaluate
the usefulness of the proposed method, we compare with
MDS, EfficientViT [18] and other methods on classification
task. We followed the original settings for BMN, AGT, MDS
and EfficientViT, and used encoding concatenation fusion for
AVFusion. For the methods that require pre-trained features,

we trained them end-to-end with trainable encoder. For com-
parison, we also trained BMN with I3D features [69] (i.e. fixed
encoder). For the models which require S-NMS [67] post-
processing, we used the validation set to search for optimal
parameters for post-processing. Final evaluation and results
are based on the test set. For DFDC, we consider the whole
fake video as one fake segment. For evaluation, we used 2
methods to generate the classification output for our method
1) Using the highest confidence of the predicted segments
as the confidence of the video being fake and 2) Training
a MLP classifier using the confidences of predicted segments.
We chose evaluation method 1) for our dataset and method 2)
for DFDC based on performance.

VI. RESULTS

Temporal Forgery Localization. We compare our method
on the full set of the proposed dataset with the latest methods
for temporal action localization and deepfake detection. From
Table II, our method achieves the best performance, which
is 76.9 for AP@0.5 and 66.9 for AR@100. Unlike temporal
action localization datasets, in our dataset there is a single
label for the fake segments, so it is reasonable that the AP
score is relatively high. The multimodal MDS method is not
designed for temporal forgery localization tasks and predicts
only fixed length segments (i.e. cannot predict the precise
boundaries), hence the scores for that method are low. As for
AGT and BMN, the scores are low because they are visual-
only unimodal methods and cannot detect the fake segments
in videos where only the audio is modified. We also eval-
vated the performance of our visual-only unimodal method,
which shows worse results than the multimodal version and
AVFusion. In addition, the results show that when the video
encoder is trained with data from the proposed dataset, BMN
performs significantly better than using 13D features. We also
evaluated the same methods on the subset of the proposed
dataset. From Table III, the performance of the visual-only
methods is improved, and for our method, the visual-only
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TABLE 1V: Temporal forgery localization results on the full set (see Section V for details) of the proposed dataset. The

contribution of different loss terms in the proposed method (see Section IV for details).

Loss Function

[ AP@05 | AP@0.75 | AP@0.95 | AR@I00 | AR@50 | AR@20 | AR@I0 |

Lo, Ly

Ly,

mev Lb
Ly, Lym, Ly

40.50 29.74 00.13 60.51 60.50 60.47 59.90
40.92 31.23 00.74 64.71 64.71 64.36 62.79
53.16 11.91 00.02 53.99 50.94 47.74 45.55
54.70 15.50 00.04 56.64 53.57 49.46 45.85
76.50 39.92 00.18 66.69 63.71 60.07 57.76
76.90 38.50 00.25 66.90 64.08 60.77 58.42

Le, Ly, Lym, Ly

score improves from 58.55 (AP@0.5) to 83.55 (AP@(.5) and
the margin between the unimodal and multimodal versions is
decreased from 18.35 (AP@0.5) to 1.65 (AP@0.5). Overall,
our method still ranks first, which demonstrates it’s superior
performance for temporal forgery detection.

Deepfake Classification. We also compare our method with
previous deepfake detection methods on the full set of the
proposed dataset and a subset of DFDC. On our dataset, our
method (0.990) outperforms F3Net [70] (0.520), MDS (0.828)
and EfficientViT (0.965). As for the subset of DFDC, the
performance of our method (0.846) is better than previous
methods such as Meso4 [71] (0.753), FWA [72] (0.727) and
[73] (0.844) and is close to MDS (0.916). It is worth noting
that, our method is not designed and trained for classification
task with classification loss. It is trained for temporal forgery
localization and then the segment outputs are summarized as
a whole video label prediction. Therefore, the performance
of our method on DFDC drops as compared to the state-
of-the-art classification method MDS. On the other hand,
previous deepfake detection methods assume that fake videos
are entirely fake, so their performance (e.g. the frame-based
approach of F3Net) is reduced on our dataset. In summary,
our method still performs well on classification task and has
potential to reach the state-of-the-art performance.

Impact of Loss Functions. From Table IV, all loss terms have
positive effect on the performance of the proposed model. The
results suggest that the frame classification loss contributes the
most to the method performance.

Failure Analysis. The output of the proposed method can be
noisy for cases that contain very short video manipulations
(£ 0.5 sec) and the corresponding real audio. For such short
video-only manipulations, if the visual transition from real to
fake and then back to real is smooth, it may lead to noisy
output.

VII. CONCLUSION

This work introduces and investigates a novel problem
related to content-driven deepfake generation and detection.
To this end, we propose a new dataset in which the audio and
video are modified at specific locations based on the change
in sentiment of the content. We also propose a new method
for temporal forgery localization in such partially modified
videos. The conducted experiments show that our method
achieves better performance than previous relevant state-of-
the-art methods.

Ethical Concerns. The proposed dataset potentially might
have a negative social impact. Since the individuals in the
dataset are celebrities, the content in the dataset may be used

for unethical purposes such as making fake rumours. Also, the
dataset generation pipeline can be used to create fake videos.
To encounter the potential negative impact of our work, we
prepared a license for public usage of the dataset and proposed
the method.

Limitations. This work has some limitations 1) The audio
reenactment method used in the dataset does not always
generate the reference style, 2) The resolution of the dataset is
constrained on the basis of source videos and 3) The high score
of classification results indicates the necessity of improving the
video reenactment method.

Future Work. Major improvement in the future will be
increasing the dataset with new token insertion, substitution
and deletion of existing tokens and converting statements into
questions.
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