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Abstract

This paper proposes a self-supervised approach to learn
universal facial representations from videos, that can trans-
fer across a variety of facial analysis tasks such as Facial
Attribute Recognition (FAR), Facial Expression Recognition
(FER), DeepFake Detection (DFD), and Lip Synchroniza-
tion (LS). Our proposed framework, named MARLIN, is a
facial video masked autoencoder, that learns highly robust
and generic facial embeddings from abundantly available
non-annotated web crawled facial videos. As a challenging
auxiliary task, MARLIN reconstructs the spatio-temporal
details of the face from the densely masked facial regions
which mainly include eyes, nose, mouth, lips, and skin to
capture local and global aspects that in turn help in encod-
ing generic and transferable features. Through a variety of
experiments on diverse downstream tasks, we demonstrate
MARLIN to be an excellent facial video encoder as well
as feature extractor, that performs consistently well across
a variety of downstream tasks including FAR (1.13% gain
over supervised benchmark), FER (2.64% gain over unsu-
pervised benchmark), DFD (1.86% gain over unsupervised
benchmark), LS (29.36% gain for Frechet Inception Dis-
tance), and even in low data regime. Our code and models
are available at https://github.com/ControlNet/MARLIN.

1. Introduction
Facial analysis tasks [34, 43, 70, 85] provide essential

cues for human non-verbal behavior analysis, and help un-

fold meaningful insights regarding social interaction [36],

communication [40], cognition [68] with potential appli-

cations in Human-Computer Interaction (HCI) and Affec-

tive Computing domains. Recently, we have witnessed sig-

nificant progress in deep neural network models to solve

facial analysis tasks such as Facial Attribute Recognition

(FAR) [34, 85], Facial Expression Recognition (FER) [48],

DeepFake Detection (DFD) [70], and Lip Synchronization

(LS) [43]. While these deep models can achieve remark-
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Figure 1. Overview of the proposed Masked Autoencoder for fa-

cial Representation LearnINg aka MARLIN. MARLIN aims to

learn a universal facial representation from abundantly available

non-annotated facial video data.

able performance, they often require large-scale annotated

datasets, which is not only a resource-expensive and time-

consuming process but also infeasible for some applications

requiring domain expertise for annotation (e.g. FER).

To this end, self-supervised pre-training [26, 37, 71] has

lately emerged as an effective strategy to address the lim-

itations of fully supervised methods, as it enables generic

representation learning from non-annotated data, that can

then be transferred across tasks having limited labels.

For images of natural scenes and objects, self-supervised

learning approaches using self-distillation [14], contrastive-

learning [18, 19], solving pre-text tasks such as jigsaw puz-

zle [53], and more recently autoencoding [37,71] have even

outperformed the supervised learning approaches.

Despite the promises offered by these self-supervised

methods in learning scalable and generic representations

for natural scene images and videos, these have not yet

been investigated for learning representations from facial

video data. Facial representation learning requires track-

ing of fine-grained face specific details which might not

be perfectly captured by linear tube masking [71]. Un-

til now, most of the existing approaches associated with

facial analysis tasks are highly specialized and develop
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task-specific models trained in a fully supervised manner

[46, 54, 63], with very few recent efforts towards learning

generic image-based facial encoding [10,84]. These closely

related works [10, 84] either focus on exploring training

dataset properties in terms of size and quality [10] or per-

forming pre-training in visual-linguistic way [84]. These

works [10, 84] are hard to scale since they use static image-

level facial information and the image-caption pairs are

highly associated with context information rather than face.

In this paper, our goal is to learn universal and task-
agnostic representations in a self-supervised manner for

face-related downstream tasks (see Fig. 1). For this pur-

pose, we employ a masked autoencoder [37, 71] with a

facial-guided masking strategy that learns to reconstruct

spatio-temporal details of a face from densely masked fa-

cial regions using non-annotated videos. Unlike existing

approaches for natural scene videos [71], where the tube-

masking is initialized with a static part of the video without

any semantic information, our approach dynamically tracks

face and then develops a facial part-guided tube mask-

ing strategy using an off-the-shelf face parser i.e. FaceX-

Zoo [75]. Thus, we pose a more challenging task that en-

courages the model to learn spatio-temporal representations

to cover local as well as global information. Inspired by

prior works [27, 60] showing high-quality reconstruction

results along with rich and generic latent features, we in-

corporate adversarial loss on top of masked encoding to

enhance reconstruction quality. Our experimental results

show that our proposed framework, MARLIN, learns highly

generic facial encoding that scale and transfers well across

diverse facial analysis tasks such as FER, DFD, FAR, and

LS and achieve favorable performance gain w.r.t. state-of-

the-art benchmarks. In summary, our main contributions

are:

• We propose, MARLIN, a universal and task-agnostic
facial encoder that learns robust and transferable facial

representation from abundantly available non-annotated

web-crawled facial videos in a self-supervised fashion.

• As a challenging auxiliary task, we propose to reconstruct

the spatio-temporal details of the face from the densely

masked facial regions. The proposed facial region-guided

tube masking (aka Fasking) strategy aims to learn local

and global aspects from facial videos which in turn help

encode generic and transferable features.

• Through extensive quantitative and qualitative analysis,

we show that MARLIN learns rich, generic, transferable,

and robust facial representation, that performs consis-

tently well across a variety of downstream tasks includ-

ing FAR (1.13% gain over supervised benchmark), FER

(2.64% gain over unsupervised benchmark), DFD (1.86%

gain over unsupervised benchmark), LS (29.36% gain for

Frechet Inception Distance) and even in few shot settings.

Table 1. Facial Analysis Tasks. Overview of different face related

tasks and relevant datasets down the lane.

Datasets # Samples Env. Fmt. Task Year

LFW [39] 13,233 Wild Img. Identification 2008

VGG-FACE [54] 2.6M Wild Img. Identification 2015

CelebA [50] 202,599 Wild Img. Attributes 2015

YouTubeFace [78] 3,425 Wild Vid Identification 2011

LRS2 [22] 144,482 Wild Vid Lip Sync. 2017

CelebV [79] 5 Wild Vid Reenact 2018

CMU-MOSEI [83] 23,453 Wild Vid Emo, Senti 2018

FaceForensics++ [62] 1,004 Wild Vid DeepFake 2019

VoxCeleb2 [23] 150,480 Wild Vid Speaker 2018

CelebV-HQ [85] 55,666 Wild Vid Attribute 2022

2. Related Work

Masked AutoEncoder. Masked autoencoder learns robust

and transferable representations based on the hypothesis of

reconstruction of the masked region. Masked autoencod-

ing is motivated by context encoders [56] and denoising en-

coders [73]. After success of BERT [26] based masking,

the vision community has also explored different design

choices of masked auto encoding such as pixel level mask-

ing [17, 37, 80], token level masking [29] and deep feature

based masking [6, 77], using vision Transformers [44, 52].

Similarly, for modeling spatio-temporal patterns of the in-

put data, masked motion modelling [69] and tube mask-

ing [71] strategies have been incorporated recently. Along

this line, MARLIN masks and reconstructs domain-specific

facial parts to learn universal facial representation.

Facial Representation Learning. Till date, most of the

existing facial analysis approaches are conducted in a

task-specific way with fully supervised manner [46, 54,

63] on manually annotated data to enhance performance.

Any state-of-the-art model’s performance on benchmarked

datasets is impacted by the quality and quantity of anno-

tated data used during training. Tab. 1 shows an overview of

the task-specific large-scale facial image or video datasets

that have been curated over the past decade [1] to facil-

itate research in Face Verification (LFW [39], MS-celeb-

1M [34], VGG-FACE [54], VGGFace2 [13]), Facial At-

tribute Recognition(CelebA [50], CelebV-HQ [85]), Facial

Emotion Recognition (CMU-MOSEI [83]), DeepFake De-

tection (FF++ [62]) and Lip Synchronization (LRS2 [22]).

However, data curation encounters several challenges such

as requirements of specialized hardware (e.g. for FER and

action unit data), the discrepancy in data distribution that

prevent merging of multiple datasets [10], and most impor-

tantly time consuming and resource expensive annotation

process. To eliminate these drawbacks, some of the exist-

ing approaches [20, 81, 82] adopt data augmentation strat-

egy via image or video synthesis as the surge in face gen-

eration technology fueled by Generative Adversarial Net-

work (GAN) [20, 67, 81, 82] and other generation tech-

niques [16, 35] aids realistic face generation even with the
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control over facial attributes. These generation techniques

add variation in training set quantitatively, but in some cases

it still lags in qualitative aspects due to domain specific in-

consistency and more importantly high network complexity.

To this end, there are very few recent works that aim to

learn image-based task specific facial encoding with limited

supervision [3,9,10,65,84,84,86,86]. The most closely re-

lated existing works [10,84] either focus on exploring train-

ing dataset properties in terms of size and quality [10] or

performing pre-training in visual-linguistic way [84]. These

works [10, 84] are hard to scale since they use static im-

age level facial information and the image-caption pairs are

highly correlated with context information rather than face.

In this work, we aim to develop a generic, universal, and

task-agnostic facial encoder that learns from web-crawled

non-annotated data. Our experimental analysis shows that

MARLIN can align the latent space manifold to any desired

downstream task specific label space. Thus, MARLIN has

the capability to act as a strong facial encoder or feature

extractor in many low-resource real world applications.

3. MARLIN
Our objective is to learn robust and transferable uni-

versal facial representation from abundantly available non-

annotated facial video data [78]. If we think holistically,

face specific tasks involve two different aspects: a) facial

appearance related attributes such as parts of the face (nose,

eyes, lips, hair, etc.), facial shape and texture which mainly

need spatial investigation; and b) facial action such as emo-

tion, Facial Action Coding System (FACS), lip synchroniza-

tion which requires temporal information. Thus, spatio-

temporal modeling is highly desirable in order to learn

strong, robust, and transferable representation. To this end,

our proposed framework, MARLIN, adopts a facial region

guided masking strategy which poses a challenging auxil-

iary reconstruction task for self supervised representation

learning (See Fig. 2). To facilitate learning from masked

auto-encoder, we mainly choose the YouTube Faces [78]

dataset that uses web-crawled facial videos from YouTube

having variation in terms of different real life conditions.

3.1. Facial Representation Learning

Preliminaries. MARLIN consists of an encoder (FφE ), de-

coder (FφD ) and discriminator (FφΓ ) with embedding pa-

rameters φE , φD and φΓ, respectively. Given a training

dataset D = {Vi}Ni=1 where N is the number of videos

in the dataset and V ∈ R
C×T0×H0×W0 (C, T0, H0, W0

are channel, temporal depth, height and width of the raw

video, respectively). From the raw input video V , we track

and crop the facial regions [75] followed by random tem-

poral sampling represented as v ∈ R
(C×T×H×W ) (T , H ,

W are the modified temporal depth, height, and width of

the derived video clip, respectively). The derived video clip

Algorithm 1 Facial-region Guided Masking Procedure

Require: v ∈ R
(C×T×H×W ), r

1: seg map← FaceXZoo(v) � Face-Parsing,

seg map∈{background,skin,left-eye,
right-eye,nose,mouth,hair}

2: P ={left-eye, right-eye, nose, mouth,
hair} � Prioritize Regions

3: k = T
t × H

h × W
w � # of tokens for each v (3D cube

tokens have dimension of t× h×w each)

4: n ← r× k � Number of masked tokens

5: X̃v ← {} � Initialize visible tokens

6: patches ={background,skin,*shuffle(P)}
� Ordered list

7: for patch in patches do
8: X̃v ← {patch}
9: if len(X̃v) == (k− r) then

10: break
11: end if
12: end for
13: X̃m ← X̃ − X̃v � X̃ is all tokens from v

v is further mapped to (k − n) visible and n masked to-

kens denoted as {X̃v ∈ R
(k−n)×e, X̃m ∈ R

n×e} by facial-

region guided masking strategy (Fφf
) with a pre-defined

masking ratio r = n
k . Here, e is the embedding dimen-

sion and k is the total number of tokens derived from v, i.e.

k = T
t × H

h × W
w , given 3D cube tokens have dimension of

t × h ×w each. Thus, MARLIN injects facial region spe-

cific domain knowledge in the aforementioned token space

to guide the representation learning via masking.

The visible tokens X̃v are mapped to the latent space z
by the following mapping function FφE : X̃v → z. The la-

tent space feature z is further fed to the decoder FφD which

reconstruct z to the n masked tokens X
′
m by the following

mapping Fφd
: z → X

′
m. In the decoder, the corresponding

visible and masked 3D cubes contain the flatten raw pixels

denoted as e = Cthw. In brief given the visible tokens X̃v ,

we reconstruct the masked tokens by the following function:

X
′
m = FφD ◦ FφE (X̃v) (1)

Reconstructing spatio-temporal facial patterns from raw

pixels is quite challenging, we deploy a discriminator

FφΓwith the adversarial training for better synthesis.

3.2. Self-Supervised Representation Learning.

The self supervised pre-training strategy of MARLIN

consists of three main components described below:

a) Facial-region Guided Tube Masking (Fasking). In or-

der to capture spatio-temporal correspondence, we have de-

ployed facial region specific tube masking strategy follow-

ing [71]. We dynamically track and mask facial compo-
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Figure 2. Architectural overview of MARLIN (Best viewed in color). MARLIN mainly consists of (a) Representation Learning Module,

(b) Facial Region guided Tube Masking, and (c) Downstream Adaptation. (a) Representation Learning Module: MARLIN learns the facial

representation from the unlabeled, web crawled video data in a self-supervised fashion (highlighted in Blue). (b) Facial Region guided
Tube Masking: With the aid of facial region guided tube masking (highlighted in Yellow), MARLIN gets joint spatio-temporal attention

which in turn facilitates downstream performance. The Face guided tube masking strategy injects domain knowledge into the pipeline. (c)

Downstream Adaptation: For facial task specific downstream adaptation, MARLIN utilizes Linear Probing (LP) and Fine-Tuning (FT) to

show the robustness, generalizability, and transferability of the learned feature (highlighted in Green).

nents across temporal axis for each spatio-temporal cube.

Our facial regions based tube-masking strategy ensures the

same facial region is masked throughout the temporal cube,

thus posing a challenging reconstruction task and promot-

ing learning local and global facial details (See Alg. 1).

As the masked spatio-temporal cubes look like deformable

bending tubes, we termed it as Facial region-guided tube
masking aka Fasking.

We begin with face parsing using FaceXZoo [75]

library which divides facial regions into the following

parts {left-eye, right-eye, nose, mouth,
hair, skin, background} (Fig. 2 (b)). Among

the facial regions, we prioritize the following set P =
{left-eye, right-eye, nose, mouth, hair}
over skin and background to preserve face specific local

and sparse features. In order to maintain pre-defined

masking ratio r, facial regions from the priority set P are

masked across frames first followed by {background,
skin} masking. Thus, Fasking generates n masked and

(k − n) visible tokens. Across all the frames of the input

v, we track specific facial regions from the pre-defined set

to encode and reconstruct spatio-temporal changes to the

model facial motion. The fasking strategy thus poses more

challenges to the reconstruction while encoding subject

specific appearance and fine-grained details.

b) Masked Autoencoder. After Fasking, (k − n) visible

tokens are given input to the Encoder FφE which maps the

tokens to the latent space z. The visible tokens serve as a

reference to generate the masked counterpart of the face.

Thus, the decoder FφDmaps the latent space z to the re-

constructed masked tokens X
′
m. Please note that similar to

VideoMAE [71], we adopt ViT [28] architecture as a back-

bone for MARLIN. A reconstruction loss (Lrecon) is im-

posed between masked cubes Xm and their reconstructed

counterparts X
′
m to guide the learning objective.

c) Adversarial Adaptation Strategy. To enhance the gen-

eration quality for rich representation learning, we incor-

porate adversarial adaptation on top of the masked auto-

encoder backbone. According to the prior literature [27,60],

adversarial training enhances generation quality which in

turn results in rich latent feature z. The discriminator FφΓas

shown in Fig. 2 is an MLP based network which imposes

adversarial loss Ladv between Xm and their reconstructed

counterparts X
′
m.

3.3. Overall MARLIN Loss

Alg. 2 summarizes the training process for the MARLIN

framework. MARLIN mainly imposes (a) Reconstruction

Loss and (b) Adversarial Loss to facilitate the training.

(a) Reconstruction Loss. Given an input masked tokens

X̃m, the masked auto-encoder module reconstruct it back to

X
′
m. To this end, we minimize mean squared error loss in

the 3D token space to update the weights of the (FφΓ◦FφE◦
Fφf

) branch. The loss is defined as

Lrecon =
1

N

N∑

i=1

||X(i)
m −X

′(i)
m ||2 (2)

where N is the total number of data in D, X
(i)
m and X

′(i)
m

are the masked token and reconstruction of i-th data in D.
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Algorithm 2 Training procedure for MARLIN

Require: Fφf
, FφE , FφD , FφΓ , Fθ, D, r, Ddown

1: while not converged do � MARLIN pre-training

2: v ← sample batch(D)
3: {X̃m, X̃v} ← Fφf

(v, r) � Fasking (See Algo 1)

4: X
′
m ← FφD ◦ FφE (X̃v) � Train FφΓ

5: {φΓ} ← �{φΓ}L(d)(Xm, X
′
m)

6: X
′
m ← FφD ◦ FφE (Xv) � Train FφE , FφD

7: {φE , φD} ← �{φE ,φD}L(g)(Xm, X
′
m)

8: end while
9: while not converged do � Downstream Adaptation

10: {v,y} ← sample batch(Ddown)
11: X̃ ← tokenize v
12: y

′ ← Fθ ◦ FφE (X̃) � Adapt downstream label

13: if Linear Probing then � Linear Probing

14: {θ} ← �{θ}Ldown(y, y
′)

15: else � Fine-Tuning

16: {φE , θ} ← �{φE ,θ}Ldown(y, y
′)

17: end if
18: end while

(b) Adversarial Loss. The adversarial adaptation considers

the Wassenstain GAN loss [5] for better reconstruction of

spatio-temporal facial patterns which in turn helps in learn-

ing rich representation. The loss is defined as follows:

L(d)adv =
1

Nn

N∑

i=1

(
∑

x′
m∈X

′(i)
m

FφΓ(x
′
m)−

∑

xm∈X
(i)
m

FφΓ(xm))

(3)

L(g)adv = − 1

Nn

N∑

i=1

∑

x′
m∈X

′(i)
m

FφΓ(x
′
m) (4)

Thus, the overall learning objective L is formulated as fol-

lows, where λW is the weighting parameter:

L(g) = Lrecon + λWL(g)adv (5)

L(d) = L(d)adv (6)

During MARLIN’s pre-training phase, L(d) updates the pa-

rameters φdis and L(g) updates the parameters φe, φd.

3.4. Downstream Adaptation

Our proposed MARLIN framework learns robust and

transferable facial representation from the facial video in

a self-supervised way. Following the standard evaluation

protocols, we adopt Linear Probing (LP) and Fine-Tuning

(FT) for downstream adaptation for different face relevant

tasks (See Fig. 2 inference module). Given any task spe-

cific downstream dataset Ddown = {vj ,yj}Nj=1, we deploy

linear fully-connected (FC) layers with embedding parame-

ters θ to align the latent space to the downstream task spe-

cific label space on top of encoder module FφE . For linear

probing, we freeze the backbone network FφE and only up-

date the Fθ. On the other hand for FT, we fine-tune the

whole module i.e. (FφE◦Fθ). When MARLIN is used as a

feature extractor for LP, it uses a sliding temporal window

to extract features Z of the input face cropped video V as

shown in Fig. 2 (c). The details of different downstream

facial tasks are described below:

Facial Attribute Recognition (FAR) predicts the presence

of appearance and action attributes such as gender, race,

hair color, and emotion of a given face video. The problem

of predicting facial attributes can be posed as a multi-label

learning problem highly dependent on rich spatial encod-

ing. For the downstream adaptation purpose, we use 28,532

train, 3,567 val, and 3,567 test videos from the CelebV-

HQ [85] dataset. Following the prior works [33, 50, 84], we

report average accuracy(↑), Area Under the Curve (AUC↑)

over all attributes.

Facial Expression Recognition (FER) task encodes

spatio-temporal facial muscle movement patterns to predict

emotion (6-class) and sentiment (7-class and 2-class) of the

concerned subject given a facial video. We evaluate the per-

formance of MARLIN on CMU-MOSEI dataset [7] which

is a conversational corpus having 16,726 train, 1,871 val,

and 4,662 test data. Following the prior works [7, 25], we

use overall accuracy(↑) as metrics.

Deepfake Detection (DFD) task predicts spatio-temporal

facial forgery given a facial video from FF++(LQ)

dataset [62]. For downstream adaptation, we use 3,600

train, 700 val, and 700 test sample videos from FF++(LQ)

dataset [62]. Following prior literature [12, 58, 76], we use

accuracy(↑) and AUC(↑) as the evaluation metrics.

Lip Synchronization (LS) is another line of research that

require facial region specific spatio-temporal synchroniza-

tion. This downstream adaptation further elaborates the

adaptation capability of MARLIN for face generation tasks.

For adaptation, we replace the facial encoder module in

Wav2Lip [57] with MARLIN, and adjust the temporal win-

dow accordingly i.e. from 5 frames to T frames. For eval-

uation, we use the LRS2 [22] dataset having 45,838 train,

1,082 val, and 1,243 test videos. Following the prior liter-

ature [57, 74], we use Lip-Sync Error-Distance (LSE-D ↓),

Lip-Sync Error-Confidence (LSE-C ↑) and Frechet Incep-

tion Distance (FID ↓) [38] as evaluation matrices.

4. Experiments and Results
We have comprehensively compared our method on dif-

ferent downstream adaptation tasks from quantitative (See

Sec. 4.2) and qualitative (See Sec. 4.3 perspectives. Ad-
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Table 2. Facial Attribute Recognition. Our proposed framework,

MARLIN, trained on YTF [78] dataset and Linear Probed/Fine-

Tuned on CelebV-HQ [85] benchmark dataset in terms of

accuracy↑ and area under the curve↑. * shows supervised methods

trained on the CelebV-HQ [85] dataset.

Method Appearance Action Overall
Acc.↑ AUC↑ Acc.↑ AUC↑ Acc.↑

R3D [72]* 92.34 0.9424 94.57 0.9173 93.45

MViTv1 [30]* 92.90 0.9452 95.13 0.9233 94.01

MViTv2 [49]* 92.77 0.954 95.15 0.9239 93.96

VideoMAE (FT) [71] 92.91 0.9529 95.37 0.9284 94.14

MARLIN (LP) 91.90 0.9373 95.25 0.9278 93.57

MARLIN (FT) 93.90 0.9561 95.48 0.9406 94.69

ditionally, we have performed extensive ablation studies to

provide justification for our design choices.

4.1. Experimental Protocols

Datasets. We evaluate the MARLIN framework on differ-

ent facial analysis tasks described in Sec. 3.4. In brief, we

use CelebV-HQ [85] for facial attribute and action predic-

tion, CMU-MOSEI dataset [7] for conversational emotion

and sentiment prediction, FF++(LQ) dataset [62] for deep-

fake detection and LRS2 [22] for lip synchronization.

Settings. For fair comparisons, we follow the dataset spe-

cific experimental protocols mentioned in the task specific

prior literature [7, 22, 33, 50, 62, 84]. Other than traditional

evaluation, we perform few shot adaptation strategy as well

to show the robustness and transferability of MARLIN.

Implementation Details. We implemented the method on

PyTorch [55] with Nvidia RTX A6000 GPU. First of all,

given any temporal chunk of a facial video, consecutive

frames are highly redundant. Therefore, to consider seman-

tically meaningful frames having significant motion across

frames, we adopt the minimum temporal stride value to be

2. Given an input video (having dimension 3× 16× 224×
224), the cube embedding layer generates 8 × 14 × 14 3D

tokens of dimension 2×16×16 to preserve spatio-temporal

patterns. Using the Fasking strategy (See Algo. 1), MAR-

LIN densely masks these tokens with a pre-defined masking

ratio. Our empirical analysis suggests that MARLIN works

favorably with a high masking ratio (90%). MARLIN’s ob-

jective is to generate the masked part from the sparse visible

tokens. After Fasking, each token is mapped to the latent

space embedding dimension of 768. From this latent em-

bedding, the masked part is reconstructed in the 3D token

space that can further be mapped to the original video. For

fair comparison, we use ViT-B as the backbone encoder,

although the impact of other ViT-variants are depicted in

ablation study. The pre-training hyperparameters are as fol-

lows: the base learning rate is linearly scaled with respect to

the overall batch size, lr = base learning rate ×
batch size/256. For self-supervised pre-training, we

use AdamW optimizer with base learning rate 1.5e−4, mo-

Table 3. Facial Expression and Sentiment Recognition. Down-

stream adaptation results on MOSEI dataset [7] for Emotion, sen-

timent (7-class), and sentiment (2-class). Our proposed method,

MARLIN, outperforms visual modality based emotion prediction

methods. Please note that SOTA for UMON [25] and GMF [4]
utilize three modalities and thus, not directly comparable. Here,

YTF: YouTubeFace [78] and LAV represents linguistic, audio, and

visual modality, respectively. * denotes supervised methods.

Tasks Pre-train Method Mod. Acc.↑

Emotion

– MViTv1 [49]* V 80.45

– UMONS [25]* LAV 80.68

– GMF [4]* LAV 81.14

YTF [78] VideoMAE [71] V 80.39

YTF [78] MARLIN V 80.60

Sentiment

(7-Class)

– MViTv1 [49]* V 33.35

YTF [78] VideoMAE [71] V 33.78

YTF [78] MARLIN V 34.63

Sentiment

(2-Class)

MOSEI [7] and
CAE-LR [45] V 71.06

IEMOCAP [11]

YTF [78] VideoMAE [71] V 72.96

YTF [78] MARLIN V 73.70

mentum β1 = 0.9, β2 = 0.95 with a learning rate scheduler

(cosine decay) [51]. For linear probing, we use Adam op-

timizer with β1 = 0.5, β2 = 0.9 and base learning rate

1e−4, weight decay 0. For fine-tuning, we use Adam opti-

mizer with β1 = 0.5, β2 = 0.9 and base learning rate 1e−4
without any weight decay.

4.2. Quantitative Analysis

4.2.1. Comparison with SOTA Facial Analysis Tasks.
We compare the performance of MARLIN with different

downstream facial analysis tasks following standard task

specific evaluation protocols [7, 22, 33, 50, 62, 84].

Facial Attributes. In Tab. 2, we compare the LP and FT

adaptation performance of MARLIN with the popular trans-

Table 4. Deepfake Detection. We compare the Fine-Tuning (FT)

results on MARLIN for FaceForensic++ [62] dataset. * denotes

supervised methods.

Pre-train Method Acc.(%)↑ AUC↑
– Steg.Features [32]* 55.98 –

– LD-CNN [24]* 58.69 –

– Constraied Conv. [8]* 66.84 –

– CustomPooling CNN [61]* 61.18 –

– MesoNet [2]* 70.47 –

– Face X-ray [47]* – 0.6160

– Xception [21]* 86.86 0.8930

– F3-Net [58]* 93.02 0.9580

– P3D [59]* – 0.6705

– R3D [72]* – 0.8772

– I3D [15]* – 0.9318

– M2TR [76]* – 0.9395

– ST-M2TR [76]* – 0.9531

YTF [78] VideoMAE [71] 87.57 0.9082

YTF [78] MARLIN 89.43 0.9305
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Table 5. Lip Synchronization. We compare Linear Probing (LP)

and Fine-Tuning (FT) results on the LRS2 [22] dataset.

Method LSE-D↓ LSE-C ↑ FID↓
Speech2Vid [41] 14.230 1.587 12.320

LipGAN [42] 10.330 3.199 4.861

Wav2Lip [57] 7.521 6.406 4.887

AttnWav2Lip [74] 7.339 6.530 –

Wav2Lip + ViT [28] 8.996 2.807 13.352

Wav2Lip + ViT + VideoMAE [71] 7.316 5.096 4.097

Wav2Lip + ViT + MARLIN 7.127 5.528 3.452

former (i.e. MViT-v1 [30] and MViT-v2 [49]) and CNNs

(i.e. R3D [72]) on CelebV-HQ [85] dataset. From the

table, it is observed that MARLIN’s FT version outper-

forms supervised MViT-v2 [49] transformer architecture by

1.13% (92.77% → 93.90%) for appearance attributes and

0.33% (95.15% → 95.48%) for action attributes. Similar

patterns are also been observed with the R3D CNN mod-

ule as well. We attribute MARLIN’s performance gain to

the pre-training strategy that encodes generic, robust, and

transferable features from any input facial video.

Emotion and Sentiment. In Tab. 3, we similarly com-

pare the LP and FT adaptation performance of conversa-

tional emotion and sentiment in terms of accuracy(↑) and

AUC(↑) on CMU-MOSEI [83] dataset. Please note that
the MARLIN is a visual modality only encoder. The results

suggest that MARLIN performs competitively with SOTA

methods [25, 45, 49], especially it outperforms unsuper-

vised SOTA CAE-LR [45] by 2.64% (71.06% → 73.70%)

on 2-class sentiment task. For emotion and 7-class senti-

ment as well, it outperforms supervised benchmarks [49]

marginally. These results also indicate that MARLIN learns

highly generic, robust, and transferable feature representa-

tion from pre-training.

DeepFake Detection. In Tab. 4, we compare the per-

formance of video manipulation on FaceForensics++ [62]

dataset and report results in terms of video-level

accuracy(↑) and AUC(↑). The results indicate that MAR-

LIN performs favorably against the supervised SOTA meth-

ods [2, 8, 15, 21, 24, 32, 47, 59, 61, 72]. This is the first

SSL work that uses only spatio-temporal visual informa-

tion anomaly to detect video manipulation. Unless F3-

Net, which uses frequency aware pattern over the tempo-

ral dimension to detect forgeries in a supervised fashion.

Whereas MARLIN irrespective of frequency pattern learns

facial representation and can detect anomalies from the

spatio-temporal signal.

Lip Synchronization. For a fair comparison, we adopt

the following experimental setups: 1) Wav2Lip+ViT: To

compare the contribution of ViT architecture [28] wrt

SOTA CNNs and MARLIN where the weights of ViT

is trained from scratch on LRS2 [22] dataset. 2)
Wav2Lip+ViT+VideoMAE: To compare the contribution

of vanilla VideoMAE with ViT backbone pre-trained on

Table 6. Few shot adaptation on different facial tasks. Compar-

ison of different methods for few shot adaptation.

Data→ MOSEI [7] FF++ [62] CelebV-HQ [85]
Task→ Emo. 7-Sen. 2-Sen. DeepFake Appr. Act.

Anno.% Acc.↑ Acc.↑ Acc.↑ AUC↑ AUC↑ AUC↑
100% 80.60 34.63 73.70 0.9305 0.9373 0.9278

50% 80.59 33.73 73.33 0.8681 0.9273 0.9270

10% 79.89 33.56 72.26 0.7459 0.8996 0.9201

1% 78.61 30.09 71.89 0.6252 0.8423 0.9063

YTF [78] dataset. 2) Wav2Lip+ViT+MARLIN: To compare

the contribution of MARLIN pre-trained on YTF [78] with

SOTA [57, 66, 74] and different design aspects. The exper-

imental results are depicted in Tab. 5 with LSE-D↓, LSE-C

↑ and FID ↓ as evaluation metrics following standard pro-

tocol [38, 57, 66, 74]. The improvement of lip sync score

(LSE-D↓: 7.521 → 7.127; FID ↓: 4.887 → 3.452) indicates

that MARLIN learns rich spatio-temporal patterns which

are transferable and robust. It is also interesting to observe

that MARLIN is adaptive to very fine grained features spe-

cific to the face as well.

4.2.2. Few-Shot Adaptation.
Few shot adaptation has recently gained attention due to its

adaptation capability with very low data regime [9, 65, 84,

86]. Following the standard evaluation protocol [9, 65, 84,

86], we also investigate the adaptation capability of MAR-

LIN. Given any downstream dataset, we use limited train set

labels to align the output manifold while keeping the test set

fixed via LP (MOSEI, CelebV-HQ) and FT (FF+) strategy.

From Tab. 6, a slight drop in performance is observed across

different tasks which further demonstrates that MARLIN

learns generic, transferable, and adaptive information.

4.2.3. Ablation Studies.
We have performed extensive ablation studies to show the

Table 7. Contribution of different modules, encoder architec-

tures, and masking strategies towards overall MARLIN frame-

work. Fasking: Facial Guided Masking, AT: Adversarial Training

Datasets → MOSEI [7] FF++ [62]
Emo.
Acc.

(%↑)

7-Sent.
Acc.

(%↑)

2-Sent.
Acc.

(%↑)

Acc.
(%↑)

AUC.
(↑)

Modules ↓
VideoMAE 80.39 33.78 72.96 87.57 0.9082

+ Fasking 80.55 34.58 73.54 87.29 0.9154

+ AT 80.58 34.05 73.17 88.00 0.9096

+ Both (MARLIN) 80.60 34.63 73.70 89.43 0.9305
Encoder Arch. ↓
ViT-S 80.38 33.40 72.69 87.43 0.8863

ViT-B 80.60 34.63 73.70 89.43 0.9305

ViT-L 80.63 35.28 74.83 90.71 0.9377
Masking Strategy ↓
Random 80.40 34.10 72.96 87.29 0.8797

Frame 79.33 33.99 72.90 86.57 0.8835

Tube 80.58 34.05 73.17 88.00 0.9096

Fasking 80.60 34.63 73.70 89.43 0.9305
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Figure 3. Impact of Masking Ratio Comparison of different

masking ratios for emotion and sentiment prediction in CMU-

MOSEI dataset [7]. Empirically, it suggests 90% masking works

best for MARLIN.

effectiveness of each component.

1) Masking ratio. We use different masking ratios in the

range [0.05 - 0.95] and repeat the pre-training followed by

LP on CMU-MOSEI [83] dataset. From Fig. 3, we see that

∼ 90% masking ratio is optimal for the MARLIN. With a

less masking ratio (i.e. ≤ 0.5 ), more information is avail-

able for the reconstruction task which degrades the feature

quality. Similarly, beyond ∼ 90%, the reconstruction task

becomes more challenging, leading to a performance drop.

With the empirical evidence, we set the masking ratio to

be ∼ 90% throughout all of our experiments. 2) Mask-
ing strategies. We further compare the proposed Fasking
strategy with existing masking strategies [31,71] i.e. Frame,

Random and Tube-Masking. The empirical results in Tab. 7

demonstrate that Fasking is better. 3) Different modules.
We progressively integrate each module and observe its im-

pact on downstream performance on CMU-MOSEI [83]

and FF++ [62] while keeping other components fixed. From

Tab. 7, we see that the addition of Fasking and Adversarial

Training (AT) improves the performance, reflecting the im-

portance of each component. 4) Encoder architectures.
To investigate the impact of the backbone encoder architec-

tures, and compare ViT-S, ViT-B, and ViT-L (See Tab. 7).

We observe that the larger model size enhances the perfor-

mance. For fair comparison, we use a ViT-B encoder.

4.3. Qualitative Aspects
In order to understand the effectiveness of the learned fea-

tures, we further conducted following qualitative analysis.

1) Facial Attributes. We visualize the important regions

that MARLIN focused on using Gradient-weighted Class

Activation Mapping (Grad-CAM) [64]. In Fig. 4 top, the

heat-map results are based on LP on top of MARLIN’s fea-

ture on CelebV-HQ [85] dataset (appearance task) and it in-

dicates that MARLIN focus on facial attributes such as hair,

spectacle, hat, etc. 2) Lip Synchronization. In Fig. 4 bot-

tom, we presents the generation results for lower part of

faces which is a challenging task. The top, middle and bot-

tom rows show ground truth, vanilla Wav2Lip [57]’s out-

put and MARLIN’s output along with the closeup looks,

respectively. Here, Wav2lip’s CNN encoder failed to lo-

cate the lip region (as shown in the Wav2lip row of Fig. 4

highlighted in red) whereas MARLIN despite pre-trained

on fasking strategy is adaptive enough to generate more ac-

{male, sunglasses, big nose, no_beard} {male, receding_hairline, sideburns}

{female, long_hair, arched_eyebrows} {male, sunglasses, no_beard}

Ground
Truth

Wav2Lip

MARLIN

Facial Attribute Recognition

Lip Synchronization

Figure 4. Qualitative Analysis. Top: Qualitative results for

MARLIN for facial attribute recognition task. Bottom: Qualita-

tive results for MARLIN for facial lip synchronization task.

curate spatio-temporal pattern for LS.

5. Conclusion
In this paper, we aim to learn a universal and generic fa-

cial encoder, MARLIN, which is adaptive, robust and trans-

ferable for different facial analysis tasks. As a challenging

auxiliary task, MARLIN reconstructs the spatio-temporal

details of the face from the densely masked facial regions to

capture local and global aspects which in turn helps in en-

coding generic and transferable features. Broader Impact.
We believe that MARLIN can act as a good feature extractor

for different downstream facial analysis tasks. Owing to the

rich facial features, it would be easy to deploy MARLIN in

low resource (e.g. mobile devices, Jetson Nano platforms)

devices for real world applications. Limitations. As the

model is trained on YouTube Face dataset [78], there could

be potential bias in terms of race and cultural background

of the identities. Potential bias can also be introduced in the

model as we use the existing face detection library [75]. We

will eliminate these limitations in our updated versions.
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