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ABSTRACT
Self-disclosure to others has a proven benefit for one’s mental
health. It is shown that disclosure to computers can be simi-
larly beneficial for emotional and psychological well-being.
In this paper, we analyzed verbal and nonverbal behavior
associated with self-disclosure in two datasets containing
structured human-human and human-agent interviews from
more than 200 participants. Correlation analysis of verbal
and nonverbal behavior revealed that linguistic features such
as affective and cognitive content in verbal behavior, and
nonverbal behavior such as head gestures are associated with
intimate self-disclosure. A multimodal deep neural network
was developed to automatically estimate the level of intimate
self-disclosure from verbal and nonverbal behavior. Between
modalities, verbal behavior was the best modality for esti-
mating self-disclosure within-corpora achieving r = 0.66.
However, the cross-corpus evaluation demonstrated that
nonverbal behavior can outperform language modality in
cross-corpus evaluation. Such automatic models can be de-
ployed in interactive virtual agents or social robots to evalu-
ate rapport and guide their conversational strategy.
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1 INTRODUCTION
Self-disclosing personal and intimate information to others
is a prerequisite for verbal psychotherapy [7]. Sharing pri-
vate information with others has demonstrated emotional,
relational and psychological benefits [21]. A recent study
found similar benefits for self-disclosure to machines [21].
Self-disclosure, if not done in a safe and secure environment,
can be also harmful.
Past work have shown that self-disclosure is facilitated

by anonymity and rapport [30]. Anonymity, the feeling that
one’s identity is protected, makes one at ease for revealing
intimate information. Rapport, the feeling of “clicking” with
another, is enhanced by the nonverbal coordination of posi-
tive emotions and mutual attention during a conversation
[39]. In a meta-analysis, Weisband and Kiesler [42] found
that patients are more likely to self-disclose to computers
rather than other humans as computers induce a higher sense
of anonymity. Virtual humans are computer-based agents
and have the additional ability to facilitate rapport through
coordinated nonverbal displays [15]. Research suggests that
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these “virtual rapport” behaviors provide benefits above and
beyond those provided by standard computer forms [31].
Therefore, virtual humans are well positioned to deliver men-
tal well-being benefits by leveraging both anonymity and
rapport. Understanding the nonverbal and verbal behavior
associated with self-disclosure can enable virtual agents to
evaluate the situation and steer the interaction towards fur-
ther disclosure. Despite its potential benefits, self-disclosure
on social media can be harmful when sensitive personal in-
formation are shared publicly [40]. Similar technologies can
be used to monitor users’ activities and inform them about
the potential risks for sharing too much information.

In this work, we aim to better understand verbal and non-
verbal behavior associated with self-disclosure, with the goal
of its automatic estimation. To this end, we analyzed the ver-
bal and nonverbal behavior of participants from two datasets
containing conversations and semi-structure interviews with
ratings for the level of self-disclosure [24, 30]. We automat-
ically extracted facial expressions, head gestures, speech
prosody features, and verbal content and performed corre-
lation analysis to identify the associated behavior. To esti-
mate self-disclosure, we formulated the problem as regres-
sion to estimate self-disclosure from behavior. Multimodal
machine learning models performing deep representation
learning were developed for this purpose. We performed
within-corpus and between-corpus evaluations to demon-
strate the generalizability of the proposed pipeline.
The major contribution of our work is as follows. First,

we study nonverbal and verbal behavior associated with self-
disclosure across two datasets. Second, we propose amachine
learning method for automatic estimation of self-disclosure
from both verbal and nonverbal behavior in a conversation
and evaluate its effectiveness within and across corpora.

2 BACKGROUND
Farber identified benefits and risks of self-disclosure in ther-
apeutic settings [13]. The benefits of self-disclosure in psy-
chotherapy includes experiencing a greater sense of close-
ness, validation and affirmation, gaining a more cohesive
sense of self, expanding one’s sense of self, achieving a
greater sense of authenticity, and relieving the psychological
pressure of painful experiences. The negative consequences
of self-disclosure include the risk of being rejected by the re-
cipient of self-disclosure, burdening another with our secret,
creating undesired impression about ourselves, experiencing
greater vulnerability and experience of shame [13]. Kang
et al. [25] studied the nonverbal behavior associated with
intimate self-disclosure. They found that participants per-
formed more head nods and tilts and paused more when
revealing their own intimate information. The authors then
developed a conversational agent imitating such behavior
which was found by users via an online survey to express

higher level of intimate statements. Zhao et al. [44] proposed
a computational framework for building rapport in dyadic
interaction. Similar to [25], they identified self-disclosure
from the agent to be an important factor to consider for
recognizing rapport. In a later work, Zhao et al. [45] fo-
cused on the automatic recognition of social conversational
strategies including self-disclosure in dyadic interactions.
They performed self-disclosure recognition from verbal and
nonverbal behavior, including speech prosody and manu-
ally annotated smiles, head nods and gaze behavior. They
achieved the accuracy of 85% for recognizing self-disclosure
from no self-disclosure. There is a growing interest in auto-
matic understanding of human behavior for human-agent
and human-robot interaction [19, 29, 44, 45]. A survey by
McColl et al. [32] identified a large body of work in HRI
that utilizes emotion and behavior tracking for improving
human-robot communication. Among others, past research
in HRI, demonstrated how emotions and engagement can be
used to improve user experience [8].
With the exception of [45] that partially used manually

annotated nonverbal behavior, past work on automatic recog-
nition of self-disclosure has been limited to language under-
standing in interactions with spoken dialogue system [35],
online patient support group forums [43], and social media
[2, 40]. Wang et al. [40] developed a language-based self-
disclosure assessment for classifying the instances of self-
disclosure on Facebook posts. Facebook users were recruited
to share and self-rate the level of self-disclosure on their
posts. External observers additionally annotated the posts
on the level of self-disclosure. The following set of features
were extracted to detect disclosure: word count, emotions, so-
cial distance, a measure of social relationship between people
mentioned and self, social normality, capturing the extent of
uniqueness of the information in language and topic features,
extracted by latent Dirichlet allocation (LDA). Support vector
regression trained on social media posts achieved r = 0.6 for
self-disclosure detection. The model was then applied to a
larger data collected on Facebook and revealed a number of
patterns in self-disclosure behavior. Female and older users
were more likely to self-disclose.

In [35], users interaction with a dialogue agent on Ama-
zon Alexa was used to train a machine learning model for
recognizing self-disclosure. Utterances spoken during the
conversation were labeled to identify the instances of vol-
untary disclosure of personal information. The following
features were extracted for disclosure recognition: bag-of-
words TF-IDF features, linguistic style such as the length
of utterances, frequency of part-of-speech tags, presence of
filler words, etc., and Linguistic Inquiry and Word Count
(LIWC) features [22], including affect, pronounces, etc. Addi-
tionally, chatbot’s utterances were also considered to better
capture conversation context. A support vector classifier
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achieved F1-score of 0.67 for recognizing disclosure consid-
ering both users and chatbot’s utterances.

3 DATA
We used two datasets with human-human and human-agent
quasi-monologue conversations to study self-disclosure and
train and evaluate machine learning models [24, 30]. Both
datasets are recorded in studies related to mental health ap-
plications (anxiety and distress) labeled by external observers
for self-disclosure on responses to specific questions.

Distress Analysis Interview Corpus
This dataset is a subset of Distress Analysis Interview Cor-
pus (DAIC) which was collected with SimSensei system that
conducted semi-structured interviews with participants [5],
originally labeled for [30]. The interview included different
phases starting by an introductory rapport building and a se-
ries of questions probing potential symptoms for depression
and post-traumatic stress disorder (PTSD). The participants
behavior was captured by a front facing camera and a wear-
able microphone. From 239 participants (149 male, 90 female)
who have participated in DAIC studies, 727 responses from
102 participants were labeled and analyzed in this paper.
DAIC was collected both by the agent being puppeteered
by an experimenter (Wizard-of-Oz scenario) and in fully au-
tonomous mode. The data analyzed in this work includes
both the Wizard-of-Oz and autonomous conditions. A snap-
shot of the agent and a participant are shown in Figure 1.

Eight questions from the more intimate and sensitive part
of the interview were selected based on their more frequent
usage in the interview. The questions were as follows:
1) “Tell me about a situation that you wish you had handled

differently.”
2) “How close are you to your family?”
3) “Tell me about an event, or something that you wish you

could erase from your memory.”
4) “Tell me about the hardest decision you’ve ever had to

make.”
5) “Tell me about the last time you felt really happy.”
6) “What are you most proud of in your life?”
7) “What’s something you feel guilty about?”
8) “When was the last time you argued with someone and

what was it about?”
External observers read the transcripts of participants’

response to these questions and rated the response on the
extent they revealed information. Each response was rated
from −3 (completely unwilling to disclose) to +3 (completely
willing to disclose) on a seven-point scale. The inter-rater
reliability between two raters for an initial subset of the data
was sufficient (α = 0.78) and the rest of the responses were
only labeled by one rater [30].

Figure 1: Structured interview with a virtual agent.

Social Anxiety and Self-disclosure Dataset
This dataset was originally collected in the form of computer-
mediated one-on-one human-human or agent interview for
the purpose of studying the effect of social anxiety on self-
disclosure. The interaction scenario was a typical social
interaction such as exchanging questions and answers to
get to know each other between two individuals performed
through a video conferencing system [24] (see Figure 2).
Since interactionswith virtual agents always happen through
a media (e.g., computer screen), the use of computer media-
tion between two individuals was motivated by creating a
situation that is similar to what a human experiences with a
virtual agent. In the study [24], interviewers (confederates)
asked questions to users without talking about themselves,
thus the authors analyzed the intimacy of self-disclosure in
interviewees (users)’ answers. The interview dataset used in
the paper involved three conditions in which avatars differed
in visual realism: a raw human video, a degraded human
video, and a virtual agent. One hundred and eight partic-
ipants (54 male, 54 female) participated in the study. The
participants were asked to respond to ten questions that
were ordered to increasingly ask for more intimate informa-
tion, as follows:
1) “How old are you?”
2) “What is your hometown?”
3) “What are your favorite things to do in your free time?”
4) “What characteristics of yourself are you most proud of?”
5) “What are some of the things you hate about yourself?”
6) “What do you dislike about your physical appearance?”
7) “What has been the biggest disappointment in your life?”
8) “What have you done in your life that you feel most guilty

about?”
9) “What are some of the things that really hurt your feel-

ings?”
10) “What is your most common sexual fantasy?”

The self-disclosure was independently rated by two ob-
servers. The observers rated transcribed data of interviewees’
answers by first identifying each “disclosure” utterance us-
ing Altman and Taylor’s three-layer categorization scheme
[1]: a peripheral layer, an intermediate layer, and core layer.
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According to Altman and Taylor, biographic information,
e.g., age, is at the peripheral layer. The examples of each
layer included: “I am 30-years old (peripheral layer),” “I like
to go shopping (intermediate layer),” and “I feel most guilty
about cheating on my girlfriend (core layer).” The observers
then rated intimacy levels of verbal self-disclosure using four
levels: 0 - no intimacy, 1 - lower intimacy, 2 - intermediate
intimacy, and 3 - higher intimacy. After the intimacy levels
were judged, inter-coder reliability was measured. To assess
inter-coder reliability, the authors performed Krippendorff’s
alpha for interval data obtained by rating intimacy levels [36].
The results of Krippendorff’s alpha showed good inter-coder
reliability (α = 0.84).

Figure 2: Computer-mediated one-on-one interview.

4 SELF-DISCLOSURE AND BEHAVIOR
Kang et al. [25] found that head nods, pauses and head tilts
are significantly correlated with intimate self-disclosure. We
are similarly interested in understanding the associations
between verbal and nonverbal behavior and intimate self-
disclosure. To this end, we automatically extracted a number
of verbal and nonverbal behavior tomeasure their correlation
with self-disclosure, to validate the results with previous find-
ings [25] and confirm the significance of the captured modali-
ties for automatic recognition of self-disclosure. Higher-level
behaviors are not used in our deep learning pipeline.

Automatic Behavior Extraction
To analyze head gestures, we used the dataset labeled in [16]
for head nod and head shake detection. It contains excerpts
from SEMAINE database collected in interaction with Sen-
sitive Artificial Listener [33]. Each recording is labeled by
other, nod and shake classes. First, we extracted the head ro-
tation angles (pitch and yaw) with OpenFace [3], resampled
them to 30Hz, and took their first order differences. We then
applied a median filter (to remove noise from head motion
data [17]) with the empirically selected kernel size of nine
samples (300ms). Using the SciPy library [23] we detected
maxima and minima in the resulting signal. Each pair of con-
secutive extreme points (2CEPs) was considered to constitute

a head gesture (nod/shake) characterized by its widthw and
height h. The width of the head gesture was calculated as
a duration between a nearest extreme point preceding the
2CEPs and a nearest extreme point following the 2CEPs (if
no preceding/following extreme point was found, we used
the start/end point of the recording instead). The height of
the head gesture was computed as the height difference be-
tween 2CEPs. The pair of features (w,h) was extracted for
all 2CEPs and averaged per recording, resulting in a feature
vector (w̃, h̃) for each recording.

We treated the nod and shake recognition as two separate
binary classification tasks. For nod recognition, we used the
features extracted from pitch angle data and extended the
negative other class with data from the shake class. For shake
recognition, we used the features extracted from yaw angle
data and extended the negative other class with data from
the nod class. These data extensions were possible due to the
fact that the three classes of data were mutually exclusive.
The resulting feature sets were z-normalized and in each
case, the minority class was randomly oversampled using
the imbalanced-learn library [28] to balance the number of
samples per class. This resulted in 146 and 174 examples per
class for nod and shake detection tasks respectively.
Hidden Markov Model (HMM) classifiers have been ex-

tensively used for head gesture recognition [16, 26, 38, 41].
Therefore, we first trained a HMM which achieved com-
parable performance to [16]. However, HMM head gesture
recognition performed poorly on our data, and we thus opted
for a simple and more generalizable machine learning model,
the k-nearest neighbors (kNN) classifier.
We trained two kNN classifiers and performed five-fold

cross-validation to find the optimal number k , searching in
the range {1, 2, . . . , 24}. We found the optimal number of k
for nod recognition to be knod = 21 with the mean accuracy
(classification rate) of 0.80 ± 0.08 and kshake = 15 with the
mean accuracy of 0.89±0.04 for shake recognition. Our kNN
predictions are also more stable that HMM.
After tracking head pose and facial action units (AUs)

with OpenFace [3], we extracted other nonverbal behavior
indicators including the standard deviations of head rotation
angles (roll, yaw and pitch) and the expression of smile based
on AU6 and AU12 intensities. We further used the voice ac-
tivity detector (VAD) of OpenSMILE [11, 12] to detect the
pauses during speech. After thresholding the VAD output
by their median value and discarding pauses shorter than
150ms, we calculated pause rate and mean pause duration.
For verbal behavior, using LIWC, we extracted a number of
linguistic features from the spoken content, such as total
function words, total pronouns, articles, verbs and psycho-
logical processes such as affective and cognitive processes.
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Correlation Analysis
After calculating the correlation coefficients, we visually
inspected the scatter plots and removed the correlations
that were mainly driven by few samples, after removing the
outliers. We only report the correlation coefficients larger
than 0.15 with p < 5 × 10−5. The correlation coefficient
between behaviors and disclosure levels are given in Table 1.

Table 1: Significant Pearson correlation coefficients between
different verbal and nonverbal behavior and level of self-
disclosure (ρ > 0.15).

Dataset Distress Social anxiety
Behavior Spearman ρ Spearman ρ

Verbal
Word count 0.57 0.17
Articles - 0.16

Prepositions - 0.22
Common adjectives - 0.15
Function words 0.21 0.20
Conjunctions 0.36 0.26
Negation -0.26 -0.27

Present focus -0.20 -
Affect - 0.17

Comparisons - 0.19
Drives - 0.21

Tentative - 0.20
Nonverbal

Head pose std pitch 0.16 0.17
Head pose std yaw 0.19 0.16

Head nods 0.23 0.17
Pause rate - 0.16

A number of linguistic characteristics including the num-
bers of spoken terms, negations, conjunctions and prepo-
sitions are associated with disclosure. The longer partici-
pants spoke and the more complex their sentences were,
they revealed more. Not all verbal behavior were consis-
tently correlated for both datasets. From nonverbal behavior,
head movements and head nod counts are correlated with
self-disclosure for both datasets. Pause rate was only sig-
nificantly correlated for the social anxiety dataset. Kang et
al. [25] have also found head nods and head tilt to be asso-
ciated with disclosure. Similarly, smile was not associated
with self-disclosure. Unlike [25], we found a weak corre-
lation with pauses which might be as a result of using an
automated method for extracting pauses.

5 AUTOMATIC ESTIMATION OF
SELF-DISCLOSURE

Modalities and Features
For both datasets, three modalities capturing verbal and non-
verbal behavior of participates were analyzed. Participants’

spoken content was manually transcribed. Nonverbal behav-
ior was captured by front facing cameras and microphones.
Videos were used to track facial expression and head pose,
and speech prosody was analyzed from audio recorded by
head-worn microphones.

Language. To represent the spoken words, we used two dif-
ferent tools for mapping the spoken utterances to a repre-
sentation (vector), i.e., a data-driven one (BERT) [6] and a
dictionary-based tool (LIWC) [22].

Bidirectional Encoder Representations from Transformers
(BERT) [6] is a method for learning a languagemodel that can
be trained on large amount of data in an unsupervised man-
ner. This pre-trained model is very effective in representing
a sequence of terms as a fixed-length representation (vector).
BERT architecture is a multi-layer bidirectional Transformer
network that encodes the whole sequence at once. BERT
representation achieves state-of-the-art results in multiple
natural language understanding tasks. In this paper, we used
pre-trained BERT for transforming participants’ responses
for each instance into a 768-dimensional vector.

Linguistic Inquiry andWord Count (LIWC) is a lexical tool
that matches the terms in a document with its dictionary
and generates scores along different dimensions including
linguistic variables such as number of conjunctions and pro-
nouns and affective and cognitive constructs such as “present
focus” and “positive emotion” [22]. The terms in each cate-
gory or selected by experts and is extensively validated on
different content. Using LIWC, we extracted 93-dimensional
features from the verbal content of each instance.

Speech. We extracted three types of features in order to cap-
ture the speech prosody, namely extended Geneva Minimal-
istic Acoustic Parameter set (GeMAP), MFCC and a deep
representation (VGGish). 13 band mel-frequency cepstral
coefficients (MFCC) were extracted from audio signals from
25ms audio frames. The MFCC and their first and second
order derivatives were extracted using OpenSMILE [11, 12]
and generated aT ×39matrix for each audio sample. GeMAP
is a set of acoustic features selected by experts in speech pro-
cessing psychology of emotion for their potential to index
affective content in voice production, their proven perfor-
mance in literature and their theoretical significance [10].
The extended set of GeMAP or eGeMAP consists of 23 fea-
tures such as fundamental frequency, loudness and formants.

Deep neural networks trained on large quantities of data
have shown to be able to learn powerful representations
[6, 18, 20]. VGGish is a deep convolutional neural network
trained on audio spectrograms extracted from a large data-
base of videos to recognize an ontology of 632 audio event
categories, for example, vehicle noise, music genre, human
locomotion [14, 20]. The audio files were first converted to
log-mel spectrogram and the resulting images were fed to
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Figure 3: Multimodal method for estimation of self-disclosure. The inputs from different modalities are passed through spe-
cific data representation modules, in this case, ResNet for vision, VGGish for speech, and BERT for language. Then the out-
put representations of these modules are passed through instance-based (language) and sequence-based (vision and speech)
encoders and mapped to a 128-dimensional vector. Finally, the representations are fused and the level of self-disclosure is
estimated.

a modified VGG deep convolutional neural network [37]
and trained to recognize Audioset classes. We used the 128-
dimensional embedding that can be generated by VGGish
after dimensionality reduction with Principal Component
Analysis (PCA)1. We used the hop size of 33ms, meaning a
128-dimensional vector was extracted for every 33ms of the
audio signals. As a result, each audio sequence is represented
by a T × 128 matrix, where T is the number of frames.

Vision. Two sets of features capturing head pose and facial
expressions were extracted. OpenFace [3] uses computer vi-
sion techniques to track head pose and detect facial action
units. The Facial Action Coding System (FACS) [9] is a tax-
onomy of facial movements that describes facial expressions,
e.g., lip puller and chin raiser. We used OpenFace to detect
the intensity of facial action units, head pose variations and
images of aligned faces per frame. We used the intensity of
17 facial action units in addition to the head pose angels as
features. Additionally for every frame, we extracted a rep-
resentation from the penultimate layer of ResNet-50 [18],
trained on ImageNet [4], after feeding the network with
aligned faces from each frame.

Methods
We formulated the automatic estimation of self-disclosure as
a regression problem. For every modality we developed an
encoder that maps its input to a 1 × 128 embedding. Each of
these encoders is then followed by a regression module that
outputs a continuous value for the level of self-disclosure.
Given the nature of self-disclosure, we evaluated the pro-
posed models with Spearman correlation (r ).

Language information is encoded with instance-based en-
coders. These encoders consist of a single fully connected
(FC) layer of size 128 that maps the language representations
1https://github.com/tensorflow/models/tree/master/research/audioset

to a 128-dimensional embedding. Since temporal dynamics
of human behavior is important in communication we used
recurrent layers as sequence-based encoders for the speech
and visual modalities. These encoders consist of a single
layer gated recurrent unit (GRU) of size 128 that maps video
and speech to a 128-dimensional embedding (i.e., only the
last state of the GRU is kept). All encoders are then followed
by one fully connected (FC) layer of size 64 and a linear
layer that outputs a scalar continuous value for the level of
self-disclosure.

Additionally, we developed a multimodal model that uses
the unimodal encoders. First, we trained all unimodal models
and evaluated their performances. Then, we used the trained
encoders of the best performing unimodal models (one per
modality) in a multimodal model. This model includes three
pre-trained encoders followed by one FC layer of size 192 for
fusion. Then a final linear layer outputs a scalar value for the
level of self-disclosure. We have illustrated the multimodal
model in Figure 3. We have also performed late fusion by
simply averaging the output of all modalities.

6 EXPERIMENTS
We conducted experiments with both datasets described in
Section 3. We present three experiments with the proposed
methods and datasets: within-corpus or corpus-dependent,
combined dataset and cross-corpus evaluation.
The goal of the within-corpus experiment is to test to

what extent the proposed methods can estimate the level
of self-disclosure when data from the same participants are
considered. For each dataset we used a k-fold (k = 10) cross-
validation procedure to train and evaluate the models. As
described previously, first we evaluated the performance of
all unimodal models. Given this information, we used the
best performing unimodal within-corpus encoders for fusion,
and trained and evaluated a multimodal model.
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The experiment on combined dataset is evaluated simi-
larly to the within-corpus experiment, i.e., through k-fold
cross-validation. In this case, however, we combined all data
from both datasets. The goal of this experiment is to investi-
gate the effect of the size of the dataset and to evaluate on a
more diverse set. The goal of the cross-corpus experiment
is to test to what extent the performance of the proposed
methods generalizes to unseen data and participants. In this
experiment, we trained the models using all data from one of
the datasets. Then, we evaluated the models with all the in-
stances from the other dataset. Given the information about
the best performing unimodal corpus-independent method,
we used the corresponding encoders for fusion, and trained
and evaluated a multimodal cross-corpus model.

During training we held out ∼ 20% of the data for the vali-
dation set. All models were trained with Adam [27] optimizer
with default parameters (α = 0.001, β1 = 0.9, β2 = 0.999,
and ϵ = 10−8) and mean squared error (MSE) loss function.
Each model was trained for 100 epochs with dropout rate of
0.1 for all layers. The models achieving the best validation
performance (i.e., lowest MSE) were selected for evaluation
on the test set. The models are evaluated in terms of Spear-
man’s rank correlation coefficient between the estimations
and the labels. All models are implemented in PyTorch [34].

7 RESULTS
We have summarized all evaluation results in Table 2. For
within-corpus and combined experiments, themean and stan-
dard deviation of the performance over folds are reported.
The results from the within-corpus experiment are sum-

marized in the first and second column of Table 2. For both
datasets the best performance is achieved with representa-
tions extracted from language, r = 0.66 and r = 0.58 by
BERT for the Distress and Social anxiety datasets, respec-
tively. The best result for each modality is shown in boldface
font. The deep representations learned from large amount of
data achieves the best performance in most cases, i.e., BERT
for language, ResNet for vision and VGGish for speech. Fur-
thermore, the results show that different fusion strategies
of the best performing models (marked in boldface font)
fall short of outperforming the best modality (language) for
within-corpus evaluations.

The results from the combined within-corpus experiment
are summarized in the third column of the table. The ob-
tained results suggest that the methods can scale to more
and diverse data without significant decrease in performance.
The results from the cross-corpus experiment are summa-
rized in the forth and fifth column in the table. Compar-
ing the result of this experiment with the results from the
corpus-dependent experiment, suggests that the methods
can generalize to unseen data to certain extent. Features rep-
resenting audiovisual data (nonverbal behavior) generalized

better than language modality. The social anxiety dataset
was recorded with lower quality microphones and that might
partly explain the failure of MFCC features in cross-corpus
evaluation. In cross-corpus evaluation, themultimodal fusion
outperforms the unimodal results.

8 DISCUSSION
The result of the within-corpus experiments clearly shows
that language is the best-performing modality for estimation
of self-disclosure. In all three corpus-dependent experiments,
the representations obtained from verbal input yielded the
best performance of the proposed methods. On the contrary,
the results of the between-corpus experiments are in favor of
the representations extracted from audiovisual data or non-
verbal behavior. One interpretation of this result might be
that the verbal content indicative for self-disclosure changes
significantly across different corpora and participants as it
is biased to the context of the conversation, e.g., datasets
involved different questions from the agent or confederate.
Moreover, verbal expressions of self-disclosure require a
more conscious effort that might be specific to each partici-
pant. On the other hand, the nonverbal behavior, which is
less controllable (requires less conscious effort) is somewhat
similar across participants. Therefore, one might speculate
that nonverbal indicators are more appropriate for estima-
tion of self-disclosure that can generalize beyond the data
used for training the models.

The Social anxiety dataset is considerably more challeng-
ing than the Distress dataset from data quality point of view.
Both image quality and audio quality are considerably worse,
due to the poorer quality of the instrumentation, whichmight
explain the persistently worse results on that dataset. Social
anxiety dataset is also about 1.5 times bigger than the por-
tion of the Distress dataset that is used in this paper. The
size of the datasets might partly explain the differences in
cross-corpus performance as the results reported on Distress
dataset were trained on a larger training set (Social anxiety).
Finally, the annotation procedures, as described in Section 3
are slightly different and might introduce further discrep-
ancies in the cross-corpus experiments. For both datasets,
labelling was performed based on observations only, and we
do not have any knowledge about the truthfulness of the
statements. The effect of potential deception assessed in the
statements is considered for the future work.
In addition to nonverbal behavior, deep representations

from audiovisual data can also capture features related to
participants’ appearance and gender. One caveat of using
such features is that our machine learning model might
learn confounding factors such as gender, appearance or
participant-specific features. However, a t-test on disclosure
scores revealed no significant differences between male and
female participants’ disclosure (p = 0.97). Our cross-corpus
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Table 2: Disclosure estimation results under different conditions. Within-corpus results are trained and tested on each dataset
and evaluated with k-fold cross-validation. Combined refers to the case where we cross-validate over both datasets combined.
For cross-corpus, we train on one dataset and evaluate on the other one. For the firs three columns, the numbers correspond
to mean (standard deviation) over folds.

Evaluation Within-corpus Combined Cross-corpus
Dataset Distress Social anxiety Both Eval. on Distress Eval. on Social anxiety
Features r [µ (σ )] r [µ (σ )] r [µ (σ )] r r

Language
BERT 0.66 (0.04) 0.58 (0.06) 0.58 (0.05) 0.20 0.40
LIWC 0.64 (0.06) 0.47 (0.07) 0.54 (0.04) 0.35 -0.00

Speech
VGGish 0.61 (0.05) 0.40 (0.09) 0.49 (0.09) 0.60 0.39
eGeMAPS 0.48 (0.08) 0.37 (0.10) 0.42 (0.08) 0.44 0.34
MFCC 0.53 (0.08) 0.42 (0.10) 0.40 (0.11) 0.04 -0.12

Vision
ResNet 0.62 (0.05) 0.39 (0.10) 0.49 (0.08) 0.61 0.39

HeadPose 0.61 (0.05) 0.39 (0.10) 0.50 (0.07) 0.60 0.39
AU 0.14 (0.16) 0.33 (0.09) 0.43 (0.06) 0.42 0.01

Multimodal
Late Fusion 0.64 (0.04) 0.53 (0.08) 0.58 (0.06) 0.62 0.42
NN Fusion 0.64 (0.04) 0.57 (0.06) 0.58 (0.06) 0.39 0.40

results achieved significant results despite being trained and
evaluated on separate populations which should rule out
most of participant-dependent factors.

9 CONCLUSIONS
Intimate self-disclosure has potential benefits for mental
well-being. It can be also harmful when done in an insecure
environment. Learning its verbal and nonverbal markers is
thus beneficial for designing better interactive social robots
or virtual agents. In this paper, we studied and analyzed ver-
bal and nonverbal behavior during intimate self-disclosure.
We trained a multimodal deep neural network to estimate
the level of self-disclosure which achieved promising perfor-
mance, in line or superior to the state-of-the-art [40].
Correlation analysis on verbal and nonverbal behavior

revealed that the linguistic content of the verbal behavior is
associated with self-disclosure. Overall, word count, affective
and cognitive processes verbally expressed and sentence
constructions were important indicators of intimate self-
disclosure. Head gestures such as nods and speech pauses
were also associated with self-disclosure.

We trained and evaluated our deep neural network to
estimate the level of self-disclosure on two datasets. For
all modalities, deep representations learned from large cor-
pora were found to be the best features for recognizing self-
disclosure. We performed within-corpus and cross-corpus

evaluations to study the performance and robustness of
different modalities for this purpose. The verbal channel
provided the best features for estimating self-disclosure in
within-corpus evaluations, achieving r = 0.66. For both
datasets, the disclosure labels were given to the transcribed
content which introduces a bias toward the verbal content.
However, we found nonverbal behavior (audiovisual) to pro-
vide more robust performance in cross-corpus evaluation.
Multimodal fusion achieved comparable performance to the
best modality (language) in within-corpus evaluation and
outperformed the best modality in cross-corpus evaluation.
This work was among the first attempts to understand

both verbal and nonverbal behavior of self-disclosure. We
demonstrated the feasibility of estimating the level of self-
disclosure and showed its robustness when evaluated across
corpora. Automatic estimation of self-disclosure will enable
machines to better sense their users’ state and provide an
engaging experience. In certain contexts such as social media,
similar methods can be used to alert users to avoid potential
risks associated with disclosing personal information.
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