
OpenSense: A Platform for Multimodal Data Acquisition and
Behavior Perception

Kalin Stefanov
kstefanov@ict.usc.edu

University of Southern California
Los Angeles, California

Baiyu Huang
baiyu@ict.usc.edu

University of Southern California
Los Angeles, California

Zongjian Li
zongjian@ict.usc.edu

University of Southern California
Los Angeles, California

Mohammad Soleymani
soleymani@ict.usc.edu

University of Southern California
Los Angeles, California

ABSTRACT
Automatic multimodal acquisition and understanding of social sig-
nals is an essential building block for natural and effective human-
machine collaboration and communication. This paper introduces
OpenSense, a platform for real-time multimodal acquisition and
recognition of social signals. OpenSense enables precisely syn-
chronized and coordinated acquisition and processing of human
behavioral signals. Powered by the Microsoft’s Platform for Situ-
ated Intelligence, OpenSense supports a range of sensor devices
and machine learning tools and encourages developers to add new
components to the system through straightforward mechanisms
for component integration. This platform also offers an intuitive
graphical user interface to build application pipelines from existing
components. OpenSense is freely available for academic research.

CCS CONCEPTS
• Human-centered computing → Open source software; • Soft-
ware and its engineering→ Real-time systems software; • Com-
puting methodologies → Machine learning.

KEYWORDS
open source; platform; multimodal; behavior; perception
ACM Reference Format:
Kalin Stefanov, Baiyu Huang, Zongjian Li, and Mohammad Soleymani. 2020.
OpenSense: A Platform for Multimodal Data Acquisition and Behavior
Perception. In 2020 International Conference on Multimodal Interaction (ICMI
’20), October 25–29, 2020, Virtual Event, Netherlands. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3382507.3418832

1 INTRODUCTION
Natural and effective h uman-machine i nteraction r equires ma-
chines to understand and produce human-like communicative social

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
ICMI ’20, October 25–29, 2020, Virtual Event, Netherlands
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7581-8/20/10...$15.00.
https://doi.org/10.1145/3382507.3418832

Figure 1: OpenSense is an open source platform for real-time
multimodal data acquisition and behavior perception.

signals. Communicative social signals employed in human inter-
action are multimodal in nature and there has been a substantial
interest in the research community for developing platforms for
multimodal sensing. OpenSense succeeds MultiSense [21] which
was a real-time computational framework, offering flexible and
efficient synchronization approaches for context-based nonverbal
behavior analysis. MultiSense was developed using the Social Signal
Interpretation (SSI) framework [22] which is based on a pipeline
architecture. SSI supports real-time recognition of social signals, a
large range of sensor devices, filter and feature algorithms, as well
as, machine learning and pattern recognition tools. Another similar
system is HCI2 [17, 18] which is based on a publisher/subscriber
model on top of a message system like Apache ActiveMQ [11]. Sim-
ilar to the platform described in this paper, Sensei [14] is built on
the Microsoft’s Platform for Situated Intelligence and is developed
primarily to recognize emotions.

In recent years, we have witnessed a significant progress with
the development of machine learning techniques targeting many
perceptual and control problems. However, building end-to-end

Short Paper ICMI '20, October 25–29, 2020, Virtual Event, Netherlands

660

https://doi.org/10.1145/3382507.3418832
https://doi.org/10.1145/3382507.3418832

Exporters

LocalExport

RemoteExport RemoteImport

LocalImport

Importers

ConsumersEnumerators Producers

MicrophoneSourceM

CameraSourceN

BiopacSourceL

FacialExpression
Component

HeadGesture
Component

BodyTracking
Component

VisualAttention
Component

VoiceActivity
Component

SpeechRecognition
Component

AcousticAnalysis
Component

Figure 2: OpenSense consists of mechanisms for device enumeration, producers for acquisition of raw data streams, user
interfaces for local and remote export/import of raw data streams, and a diverse set of consumer components for data analysis.

multimodal systems remains a challenging, error-prone and time-
consuming engineering task. Such end-to-end multimodal systems
should leverage multiple technologies, act autonomously and in-
teract with people in the open world domain. There are numerous
challenges to address when developing complex end-to-end multi-
modal systems including, real-time processing, synchronization and
coherent treatment of data streams, and multimodal data fusion.

OpenSense1 is a platform for real-time multimodal acquisition
and recognition of social signals carefully designed to address these
challenges. OpenSense supports a range of sensors and machine
learning tools and provides an environment that encourages de-
velopers to add new sensors and machine learning components
through straightforward integration mechanisms. Furthermore,
OpenSense offers front-end users an intuitive graphical user in-
terface to build application pipelines from existing components.
Unlike the existing multimodal systems, OpenSense is open source,
developer- and user-friendly, and provides coherent mechanisms
for data synchronization and fusion. Additionally, OpenSense of-
fers mechanisms for distributed computations that are essential
for multiagent (multiparty) scenarios or in situations where com-
plex machine learning components compete for computational
resources.

The main contribution of this paper is the introduction of an
open source platform for multimodal data acquisition and behavior
perception called OpenSense. The platform aims to reduce the time-
consuming and error-prone engineering task of building end-to-end
multimodal systems by offering support for,

• user defined number of input streams;
• user defined number of processing streams;
• distributed computational graphs;
• synchronization and fusion of data streams;
• application design and execution without programming.

2 OPENSENSE
Figure 1 provides a screenshot of the system in action (currently
only available on Windows). OpenSense is built on the Microsoft’s
Platform for Situated Intelligence2 (\psi) [5], an open source and
extensible framework that enables the development of situated

1https://github.com/intelligent-human-perception-laboratory/OpenSense
2https://github.com/microsoft/psi

integrative-AI systems. Consequently, OpenSense inherits all com-
putational tools provided by the \psi runtime and core libraries,
including parallel computing over streams of data, reasoning about
time, data stream synchronization, and multimodal data fusion.

2.1 Core
\psi consists of three layers - Runtime, Tools and Components.
OpenSense extends the Components layer of \psi by introducing
new producers and consumers. An OpenSense producer is a source
component that communicates directly with a sensor (e.g., camera,
microphone) and streams the captured raw data down the applica-
tion pipeline. An OpenSense consumer is a consumer component
that in the most general case, takes a number of streams as input,
e.g., video, and produces a number of streams as output, e.g., facial
expression recognition result. An illustration of the current state of
OpenSense is given in Figure 2.

2.1.1 Enumerators. Enumerators are OpenSense routines for de-
tection and enumeration of all sensors recognized by the platform.
OpenSense provides three enumerators at the moment - camera
source, microphone source and biopac source.

The camera source,microphone source, and biopac source
enumerators consist of routines that enumerate all camera, micro-
phone, and BIOPAC sensors connected to the machine. The camera
and microphone source enumerators are built on top of routines
provided by \psi to detect the hardware specifications of the recog-
nized cameras and microphones. The biopac source enumerator is
a custom C# implementation and uses the network data transfer
(NDT) functionality of BIOPAC to detect the hardware specifica-
tions of the recognized BIOPAC devices.

2.1.2 Producers. Producers are OpenSense source components that
acquire raw data from the detected sensors and stream it down the
application pipeline. OpenSense provides three producers at the
moment, one for each enumerator - video stream producer, audio
stream producer and physiological stream producer.

The video stream producer, audio stream producer, and
physiological stream producer acquire video, audio and physi-
ological data from the camera, microphone and BIOPAC sensors
detected by the camera, microphone and biopac source enumerators.
These producers are initialized by the user by choosing the desired

Short Paper ICMI '20, October 25–29, 2020, Virtual Event, Netherlands

661

https://github.com/intelligent-human-perception-laboratory/OpenSense
https://github.com/microsoft/psi

CameraSource

AudioOut

VideoOut

HeadGestureComponent

GestureOutPoseIn

FacialExpressionComponent

PoseOut

AUOut

VideoIn

GazeOut

DisplayHeadGesture

GestureIn

Figure 3: OpenSense Designer enables the definition of custom computational graphs.

sensors and hardware specifications (e.g., framerate, resolution,
sampling rate, analog, digital, calculation channels).

2.1.3 Exporters. Exporters are user interfaces that give control
over the enumerators and producers. OpenSense users can use
the exporters to switch and choose the sensors and set hardware
settings that will generate raw data streams in the application
pipeline.

2.1.4 Importers. Importers are user interfaces that import raw data
streams from the exporters (i.e., enumerators and producers). Im-
porters give control over the consumers that will use the imported
raw data streams. OpenSense users can use the importers to switch
and choose the consumers that will generate new processed data
streams in the application pipeline.

2.1.5 Consumers. Consumers are OpenSense consumer compo-
nents that take a number of data streams as input and produce
a number of data streams as output. OpenSense provides several
consumer components that implement access to state-of-the-art
libraries for real-time visual and acoustic analysis. Next, we give
an overview of the consumer components that are currently imple-
mented in the system.

The body tracking component is a customC#wrapper around
an open source C++ implementation of OpenPose3 [6, 7, 19, 23].
This component can efficiently perform 2D multi-person keypoint
detection and 3D single-person keypoint detection based solely
on RGB color images. This component consumes video streams
from video stream producers, and produces detection results for
each frame which can be consumed by latter components in the
pipeline. The implementation of this component is based on the
OpenPose Unity plugin - an official derivative version of OpenPose
for the Unity [13] game engine. Using the default configuration,
the body tracking component can reach a near to real-time output
frame rate with the help of CUDA [16] capable graphic cards. Better
computational performance can also be achieved by reducing the
maximum number of tracked people or the scale of the underlying
network, without loss in precision.

The visual attention component is a custom C# implemen-
tation. This component can perform user gaze estimation on a
computer screen through personal calibration. This component
consumes gaze data streams from facial expression components
and combines it with the personal calibration data to produce coordi-
nates on the computer screen. The estimated results for each frame
can be consumed by latter components in the pipeline. The func-
tionality is implemented by following the work described in [20]
that also allows for head movements.
3https://github.com/CMU-Perceptual-Computing-Lab/openpose

The facial expression component is a custom C# wrapper
around an open source C++ implementation of OpenFace4 [2–
4, 24, 25]. This component can perform facial landmark detection,
facial landmark and head pose tracking, facial action unit recogni-
tion, gaze tracking and facial feature extraction. This component
consumes video streams from video stream producers, and produces
detection results for each frame which can be consumed by latter
components in the pipeline. Additionally, the base functionality of
OpenFace is extended with a facial expression recognition model5.
Integration of this functionality into OpenSense involves the use
of ML.NET6 with Open Neural Network Exchange7 to import the
pre-trained model into the system.

The head gesture component is a custom C# implementation.
This component can detect user head nods, head shakes and head
tilts. This component consumes head translation and head rotation
data streams from facial expression components. The recognition
results for each frame can be consumed by latter components in
the pipeline. The recognition is achieved through three Recurrent
Neural Network (RNN)models, for nods, shakes and tilts where each
RNN outputs the probability of each head gesture. The component
supports several strategies for fusion of the results and choosing
the most probable head gesture. The RNN models are implemented
in Keras [8] with TensorFlow [1] backend. OpenSense uses ML.NET
with Open Neural Network Exchange to import the pre-trained
models.

The speech recognition component is a custom C# imple-
mentation of three alternative components. Two versions of the
component use cloud-based platforms to transcribe speech, Google
Cloud Platform [12] and Microsoft Azure [15]. The last version
of the component also implements on device speech recognition
through the Microsoft Windows 10 native automatic speech recog-
nition functionality. This component consumes audio streams from
audio stream producers and the recognition results can be con-
sumed by latter components in the pipeline.

The voice activity component is a custom C# implementation.
This component detects the presence of speech in the audio stream
through the Microsoft Windows 10 native automatic speech recog-
nition functionality. This component consumes audio streams from
audio stream producers and the detection results can be consumed
by latter components in the pipeline.

The acoustic analysis component is a custom C# wrapper
around an open source C++ implementation of OpenSMILE8 [9, 10].

4https://github.com/TadasBaltrusaitis/OpenFace
5https://github.com/justinshenk/fer
6https://github.com/dotnet/machinelearning
7https://github.com/onnx/onnx
8https://github.com/naxingyu/opensmile

Short Paper ICMI '20, October 25–29, 2020, Virtual Event, Netherlands

662

https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/TadasBaltrusaitis/OpenFace
https://github.com/justinshenk/fer
https://github.com/dotnet/machinelearning
https://github.com/onnx/onnx
https://github.com/naxingyu/opensmile

As the rest of the consumer components, the acoustic analysis com-
ponent can simultaneously consume multiple streams produced
by stream producers and generate multiple output data streams.
This component consumes audio streams from audio stream pro-
ducers and the processed data streams can be consumed by latter
components in the pipeline. The component can utilize the exist-
ing pre-possessing, lower-level, and higher-level feature extraction
modules defined through OpenSMILE configuration files.

2.2 Designer
An OpenSense application generally consists of a computational
graph that contains a set of components (nodes in the graph), con-
nected via time-aware streams of data (edges in the graph). Most
applications use various sensor components (e.g., cameras, micro-
phones) to generate source streams, which are then further pro-
cessed and transformed by other consumer components in the
pipeline. In order to minimize the effort for application develop-
ment, OpenSense also offers an intuitive graphical user interface,
OpenSense Designer, to build application pipelines from existing
components. An illustration of the design and definition of a compu-
tational graph for a sample application using OpenSense Designer
is given in Figure 3.

OpenSense Designer is implemented using React.js9. OpenSense
Designer is a user interface that consists of two parts - control
panel and design panel. From the control panel, users can choose a
computational component or a delegate component. A computa-
tional component is an OpenSense sensor or consumer component
as described previously. A delegate component does not do any
computations, this type of component is used for data visualization.
Once the desired computational graph components are placed in
the design panel, the user can connect the emitters of one compo-
nent with the receivers of another and export the computational
graph to OpenSense. Upon import of the computational graph,
OpenSense will verify that the data type of the emitters and the
receivers connected in the graph match; then the user can run a
custom application based on the defined computational graph.

3 APPLICATIONS
We envision that the platform will be useful in a diverse set of
scenarios, here we mention several base use cases. OpenSense can
be utilized for synchronized data acquisition. OpenSense users
can store (synchronized) raw and processed data streams in files.
The platform supports both binary data storage (directly importable
into \psi Studio and OpenSense) and tools for exporting streams to
standard data formats (e.g., .mp4, .wav, .csv). The platform can be
used for synchronized real-time multimodal behavior recog-
nition and consequently serve as behavior perception component
of a socially interactive system (e.g., a conversational agent).
Additionally, \psi offers a ROS Bridge for integration of ROS compo-
nents into \psi applications (and OpenSense applications), enabling
easy integration with robotic applications.

4 ACCESS
OpenSense is freely available for academic research. The code
and documentation can be found at https://github.com/intelligent-
9https://github.com/facebook/react

human-perception-laboratory/OpenSense. Users should respect
the licenses of the deployed components.

5 CONCLUSION
We present OpenSense, an open source multimodal behavior sens-
ing platform. We envision that the platform will extend beyond its
current state to serve as a component for low-, middle- and high-
level sensing capabilities of systems engaged in face-to-face (multi-
party) multimodal interactions. The platform will aid researchers
during the time-consuming and error-prone engineering task of
building end-to-end multimodal systems and enable researchers to
carry out smooth and reproducible experiments in multimodal and
multiparty interaction. The OpenSense codebase is actively opti-
mized and extended with new components and functionalities and
contributions to the code repository are welcome; in the near future
we envision that OpenSense will be a community-driven platform.
We plan four major directions for future work, including support
for more sensor components, support for more consumer compo-
nents, extended support for distributed computational graphs and
implementation of a cross-platform system.

Connecting many consumer components into a computational
graph on a single-node server may not meet the fast-growing de-
mand of computational power. One solution is adding the ability to
optionally distribute consumer components to nodes in a cluster.
This can be achieved by wrapping consumer components using
container technology, so that they can be easily deployed and make
the system able to scale to the actual demand. In other scenarios,
the source components might be physically distributed on different
hardware (e.g., robots). OpenSense addresses such cases by provid-
ing mechanisms for raw data stream acquisition from sensors on
the network (i.e., remote export/import in Figure 2). Distributed
computational graphs bring additional challenges related to data
compression and encryption that need to be addressed. Resolving
these challenges will ensure that the system can run safely and
smoothly on the Internet.

OpenSense is currently only available on Windows. The cur-
rent major issue related to making OpenSense cross-platform is
the native code building tool chains of OpenSense’s dependencies.
We want to upgrade our building tool chain to make the building
process easy to manage and suitable for targeting more than one
platform.

ACKNOWLEDGMENTS
Research was sponsored by the Army Research Office and was
accomplished under Cooperative Agreement Number W911NF-20-
2-0053. The views and conclusions contained in this document are
those of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of the Army
Research Office or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein. We thank
the \psi team at Microsoft Research for their continuous support.
This research was also supported by Research on Azure Program
of Microsoft. We thank Jon Gratch, Skip Rizzo and Rich DiNinni
for their support.

Short Paper ICMI '20, October 25–29, 2020, Virtual Event, Netherlands

663

https://github.com/intelligent-human-perception-laboratory/OpenSense
https://github.com/intelligent-human-perception-laboratory/OpenSense
https://github.com/facebook/react
https://github.com/intelligent-human-perception-laboratory/OpenSense

REFERENCES
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M.
Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K.
Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. 2015. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems. http://tensorflow.org/

[2] T. Baltrušaitis, M. Mahmoud, and P. Robinson. 2015. Cross-Dataset Learning
and Person-Specific Normalisation for Automatic Action Unit Detection. In
Proceedings of the IEEE International Conference on Automatic Face and Gesture
Recognition. 1–6.

[3] T. Baltrušaitis, P. Robinson, and L-P. Morency. 2013. Constrained Local Neural
Fields for Robust Facial Landmark Detection in the Wild. In Proceedings of the
IEEE International Conference on Computer Vision. 354–361.

[4] T. Baltrušaitis, A. Zadeh, Y. C. Lim, and L-P. Morency. 2018. Openface 2.0: Facial
Behavior Analysis Toolkit. In Proceedings of the IEEE International Conference on
Automatic Face and Gesture Recognition. 59–66.

[5] D. Bohus, S. Andrist, and M. Jalobeanu. 2017. Rapid Development of Multimodal
Interactive Systems: A Demonstration of Platform for Situated Intelligence. In
Proceedings of the ACM International Conference on Multimodal Interaction. 493–
494.

[6] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh. 2019. OpenPose:
Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2019).

[7] Z. Cao, T. Simon, S-E. Wei, and Y. Sheikh. 2017. Realtime Multi-Person 2D Pose
Estimation using Part Affinity Fields. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition.

[8] François Chollet et al. 2015. Keras. https://keras.io.
[9] F. Eyben, F. Weninger, F. Gross, and B. Schuller. 2013. Recent Developments in

OpenSmile, the Munich Open-Source Multimedia Feature Extractor. In Proceed-
ings of the ACM International Conference on Multimedia. 835–838.

[10] F. Eyben, M.Wöllmer, and B. Schuller. 2010. OpenSmile: TheMunich Versatile and
Fast Open-Source Audio Feature Extractor. In Proceedings of the ACM International
Conference on Multimedia. 1459–1462.

[11] The Apache Software Foundation. 2020. Apache ActiveMQ. http://activemq.
apache.org/

[12] Google. 2020. Google Cloud Platform. https://cloud.google.com
[13] J. Haas. 2014. A History of the Unity Game Engine. (2014).
[14] D. J. McDuff, K. Rowan, P. Choudhury, J. Wolk, T. Pham, and M. Czerwinski.

2019. A Multimodal Emotion Sensing Platform for Building Emotion-Aware
Applications. CoRR abs/1903.12133 (2019).

[15] Microsoft. 2020. Microsoft Azure. https://azure.microsoft.com
[16] Nvidia. 2020. CUDA. https://developer.nvidia.com/cuda-zone
[17] J. Shen and M. Pantic. 2009. A Software Framework for Multimodal Human-

Computer Interaction Systems. In Proceedings of the IEEE International Conference
on Systems, Man and Cybernetics. 2038–2045.

[18] J. Shen, W. Shi, and M. Pantic. 2011. HCI2 Workbench: A Development Tool for
Multimodal Human-Computer Interaction Systems. In Proceedings of the IEEE
International Conference on Automatic Face and Gesture Recognition. 766–773.

[19] T. Simon, H. Joo, I. Matthews, and Y. Sheikh. 2017. Hand Keypoint Detection
in Single Images Using Multiview Bootstrapping. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.

[20] K. Stefanov. 2010. Webcam-based Eye Gaze Tracking Under Natural Head Move-
ment. Master’s thesis. University of Amsterdam.

[21] G. Stratou and L-P. Morency. 2017. MultiSense-—Context-Aware Nonverbal Be-
havior Analysis Framework: A Psychological Distress Use Case. IEEE Transactions
on Affective Computing 8, 2 (2017), 190–203.

[22] J. Wagner, F. Lingenfelser, T. Baur, I. Damian, F. Kistler, and E. André. 2013. The
Social Signal Interpretation (SSI) Framework: Multimodal Signal Processing and
Recognition in Real-Time. In Proceedings of the ACM International Conference on
Multimedia. 831–834.

[23] S-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. 2016. Convolutional Pose
Machines. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition.

[24] E. Wood, T. Baltrušaitis, X. Zhang, Y. Sugano, P. Robinson, and A. Bulling. 2015.
Rendering of Eyes for Eye-Shape Registration and Gaze Estimation. In Proceedings
of the IEEE International Conference on Computer Vision. 3756–3764.

[25] A. Zadeh, Y. C. Lim, T. Baltrušaitis, and L-P. Morency. 2017. Convolutional Experts
Constrained Local Model for 3D Facial Landmark Detection. In Proceedings of
the IEEE International Conference on Computer Vision. 2519–2528.

Short Paper ICMI '20, October 25–29, 2020, Virtual Event, Netherlands

664

http://tensorflow.org/
https://keras.io
http://activemq.apache.org/
http://activemq.apache.org/
https://cloud.google.com
https://azure.microsoft.com
https://developer.nvidia.com/cuda-zone

	Abstract
	1 Introduction
	2 OpenSense
	2.1 Core
	2.2 Designer

	3 Applications
	4 Access
	5 Conclusion
	Acknowledgments
	References

