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ABSTRACT
This work addresses the problem of active speaker detection in
physically situated multiparty interactions. This challenge requires
a robust solution that can perform effectively across a wide range
of speakers and physical contexts. Current state-of-the-art active
speaker detection approaches rely on machine learning methods
that do not generalize well to new physical settings. We find that
these methods do not transfer well even between similar datasets.
We propose the use of group-level focus of visual attention in com-
bination with a general audio-video synchronizer method for im-
proved active speaker detection across speakers and physical con-
texts. Our dataset-independent experiments demonstrate that the
proposed approach outperforms state-of-the-art methods trained
specifically for the task of active speaker detection.

CCS CONCEPTS
• Computing methodologies → Neural networks; Supervised
learning; Unsupervised learning; • Human-centered computing
→ Collaborative interaction; Laboratory experiments.
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1 INTRODUCTION
Understanding the roles on the conversational floor (i.e., speaker,
addressee, bystander), known as footing [12, 13], is a prerequisite for
natural and effective verbal interaction. Therefore, to successfully
and fluently participate in a situated, multiparty human-machine
conversation, a system must understand those roles. Active speaker
detection is the task of identifying the current speaker (if any) from
a set of candidate speakers. It is necessary for recognizing who is
talking and for attributing any thoughts, ideas, and opinions to the
speaker.
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Although most humans can perform active speaker detection
with relative ease, machines struggle to do so accurately. This task
is inherently multimodal, requiring an accurate synthesis of and
reasoning about visual, auditory, and linguistic information. In
physically situated interactions, this challenge is amplified by sen-
sor limitations, e.g., monocular cameras and far-field microphones.
Additionally, natural conversations can be noisy, with overlaps,
cut-ins, and backchannels that can blur the distinction between the
active speaker and other group members.

Due to these challenges, we hypothesise that it is helpful to
incorporate information beyond the candidate speaker’s visual
and auditory data alone. Such information can include objects of
interest in the environment or, in the case of multiparty interactions,
it can include information from other group members, such as their
focus of visual attention. In this work we propose to utilize group
members’ focus of visual attention to improve the performance
of state-of-the-art active speaker detection methods. The main
contributions of this work are as follows.

• We evaluate state-of-the-art methods for the task of active
speaker detection in situated multiparty interactions.

• We analyse some of the conditions under which these meth-
ods fail when used in situated multiparty interactions.

• We propose and evaluate methods that utilize group mem-
bers’ focus of visual attention to address some of these short-
comings.

2 BACKGROUND
Active speaker detection (ASD) is the task of determining if a certain
speaker is active at any point in time. In clean acoustic conditions,
and with single speaker, the acoustic information is fundamental
for the ASD task, and methods for audio-only ASD have been ex-
tensively studied. Anguera et al. [2] and Tranter and Reynolds [28]
offer comprehensive reviews of the research in this field. Audio-
only ASD systems usually suffer from noisy environments, far-field
microphones, and speakers that overlap in time. Additionally, audio-
only approaches are limited in multiparty interactions, where it is
important to assign the detection to speakers that might be physi-
cally close.Video-onlymethods attempt to directly model the face,
e.g., [1, 27], or some aspects of the face (e.g., lip movements [20]).
The drawbacks of these methods are related to motions, e.g., facial
expressions, that can be misinterpreted as speaking.

Audio-visual methods combine information from both the au-
dio and visual modalities; complementing the audio approach with
its video counterpart generally produces better performance due to
increased robustness [6, 7, 11, 16, 18]. Recently, researchers have
employed Artificial Neural Networks for ASD from audio-visual
input. A multimodal Long Short-Term Memory (LSTM) model that
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learns shared weights between modalities was proposed in [18].
A combination of a pre-trained Convolutional Neural Network
(CNN) model used as image encoder and an LSTM model used
as classifier was presented in [24]. Stefanov et al. [25] proposed a
self-supervised method in the context of language acquisition. Hu
et al. [14] proposed a CNN model that learns the fusion of face and
audio information.

Other approaches to ASD include a general pattern recogni-
tion framework used by Besson and Kunt [4]. Visual activity (the
amount of movement) and the focus of visual attention were used
as inputs by Hung and Ba [15]. Stefanov et al. [27] used facial action
units as inputs to Hidden Markov Models and Vajaria et al. [29]
demonstrated that information from body movements can improve
detection performance.

3 METHODOLOGY
Given a number of candidate speakers, active speaker detection
(ASD) consists of the task of determining, at any point in time, what
speakers are active using information from that point in time. This
is a binary classification problem (per candidate speaker) where
the input is the part of the image capturing the candidate speaker
and the associated audio. The backbone model used in this work is
the state-of-the-art audio-video synchronizer [9, 10, 21]. Following
the state-of-the-art in ASD [8], the synchronizer is turned into
detectors by training a Temporal Convolution Network (TCN) and
a Bidirectional Long Short-Term Memory (BLSTM). We propose
novel methods to augment the synchronizer with information for
the group members’ focus of visual attention for improved cross-
dataset ASD.

3.1 Datasets
The recent introduction of the AVA-ActiveSpeaker dataset [19]
consisting of nearly 40 hours of video data frommovies has allowed
for benchmarking different methods for ASD. However, the use
of data from movies does not support the development of ASD
methods for physically situated interactions. To address this issue,
we used two private multiparty interaction datasets described next.

3.1.1 Robot-Facilitated Support Group Dataset (RFSG). The robot-
facilitated support group dataset [5] consists of 27 multiparty in-
teractions between three students and a robot. The robot lead the
support group by asking questions and making disclosures to en-
courage the human members of the group to share and receive
support, using the set up shown in Figure 1a. The robot’s utter-
ances were selected from a predefined set of questions and state-
ments by a human “wizard”. The total number of participants in the
dataset is 81. The average duration of the interactions is 20minutes,
resulting in a total of 10 hours of data per recording device. The
active speaker labels were obtained by manual annotations. In this
work we consider the color video stream generated by the camera
pointed at each participant and the audio stream generated by a
single microphone in the middle of the table.

3.1.2 Focus of Visual Attention Dataset (FOVA). We also analyzed
themultimodalmultiparty dataset described in Stefanov and Beskow
[23]. Each interaction consisted of three participants: one moder-
ator and two interactants, using the spatial configuration shown

in Figure 1b. A total of 15 sessions were recorded, each lasting
approximately 30minutes, resulting in 7.5 hours of data per record-
ing device. The moderator was the same in all interactions, while
the other participants varied, totalling 24 unique participants. The
active speaker labels were obtained by manual annotations. In this
work we consider the color video stream generated by the Kinect
RGB-D camera pointed at each participant and the audio stream
generated by the participants’ close-talking microphone.

3.2 Experimental Setup
We evaluated the performance of the ASDmethodswith three exper-
iments: within dataset speaker-dependent (10-fold cross-validation),
within dataset speaker-independent (leave-6-out cross-validation),
and cross-dataset speaker-independent (train on one dataset and
test on the other). The within-dataset speaker-dependent experi-
ment trained models with data for all participants and evaluated
them on independent data from all participants in the same dataset.
The within-dataset speaker-independent experiment trained mod-
els with data for a subset of participants and evaluated them on the
left-out participants in the same dataset. This experiment tested
the transferability (generalization capabilities) of the models to un-
seen participants from the same physical context. The cross-dataset
speaker-independent experiment used all data from one dataset to
train the models, and all data from the other dataset to evaluate
them. This experiment tested the transferability (generalization
capabilities) of the models to both unseen participants and physical
contexts. The experiments directly demonstrated the contribution
of the work in terms of error analysis and proposed strategies to
address the identified shortcomings of the ASD methods.

3.2.1 Features. We present experiments with two sets of features
termed PerfectMatch and VisualAttention.

PerfectMatch – in Chung and Zisserman [9], the authors trained
a Convolutional Neural Network termed SyncNet for the purpose
of synchronizing audio and video tracks of individuals talking. The
network consisted of 6 convolutional layers followed by 2 fully
connected layers for both audio and video, separately. The model
takes as input 5 video frames and the corresponding audio samples.
This model was shown to be effective for ASD by comparing the
magnitude of the difference between the final audio and video fea-
tures. In Chung et al. [10], the authors employed a different strategy
for training the original SyncNet model. The new model termed
PerfectMatch was shown to outperform the original SyncNet model.
In our experiments, we used the features of the final convolutional
layer from the PerfectMatch model that has been trained on the
VoxCeleb dataset [17].

VisualAttention – we used visual attention features inspired
by Stefanov et al. [26]. We implemented both binary and continu-
ous representations of whether any of the other group members
are looking at the candidate speaker. To measure the direction of
the visual attention of each group member, we used the 3D posi-
tion and orientation of the head. For the FOVA dataset, an RGB-D
Kinect camera with calibrated position and orientation was used to
acquire those measures. For the RFSG dataset, the measures were
approximated through OpenFace [3] from cameras with calibrated
positions and orientations. For both datasets, the position and ori-
entation of the participants’ head was recreated in the same 3D
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(a) Robot-Facilitated Support Group. (b) Focus of Visual Attention.

Figure 1: Spatial configuration of the sensors and participants in the datasets.

space for each video frame where the head position and orientation
was used to create a vector of visual attention. The binary represen-
tation creates a cylinder around the candidate speaker’s head and
judges a group member to be looking at that person if the head pose
vector of the group member intersects with the cylinder. We used
5× the average male head size for the dimensions of the cylinder.
The continuous representation measures the angle between the
group member’s head pose and the vector from the group mem-
ber’s head to the candidate speaker’s head. The measured angle is
mapped to a range between 0 and 1, in which an angle of 0 degrees
(the group member is looking directly at the candidate speaker) is
1 and the angle of 75 degrees (the group member is looking away
from the candidate speaker) is 0.

Augmentation – we combined the VisualAttention features for
a candidate speaker by averaging the features produced by each of
the other group members. This produced a single value for both the
binary and continuous features. In both cases, the closer this value
was to 1, the more likely the candidate speaker was the focus of
attention; conversely, the closer the value was to 0, the less likely it
was that they are the focus of attention. To augment the detection
of a given model, which is also between 0 and 1, we implemented
three preliminary methods: 1) we combined the VisualAttention
feature with the model detection in an unweighted average, 2)
we combined them in a weighted average skewed towards the
VisualAttention feature, and 3) we multiplied the model detection
value with a VisualAttention feature shifted from the range [0, 1]
to the range [0.5, 1.5] in order to allow the feature to modify the
model detection.

3.2.2 Models. For each experiment, we independently evaluated
the synchronizer, detectors, and augmented synchronizer in order to
compare the models and provide evidence for some of the situations
in which they fail.

The synchronizer was implemented as described in [10]. This
included an input of 5 video frames and the corresponding audio,
resulting in 1024D audio and video features. These features were
cross-correlated to find the minimum difference (the matching

synchronization), then the difference between the features was
median-filtered and normalized for each video. This produced a
single value in the range [0, 1] that was used as the detection of
whether the candidate speaker was speaking. For the synchronizer
we used the state-of-the-art pre-trained model.

The detectors were implemented as described in [8]. A window
of 5 of the 512D audio and video features was used as input to a 2-
layer time series model before being combined in a fully connected
layer. The fully connected layer was then connected to a softmax
layer to produce the final output probabilities. As in [8], we tested
both a Temporal Convolution Network and a Bidirectional Long
Short-Term Memory as the time series model. The detectors were
trained as described in [8]. The input features from the synchronizer
were held constant and the models were trained on the FOVA and
RFSG datasets individually for each experiment.

The augmented models were implemented by combining the
detection of the synchronizer with the VisualAttention features
using the three different augmentation methods.

3.2.3 Evaluation. Each of the models was evaluated on an unseen
test set. In the case of the synchronizer, the model was trained on
the VoxCeleb dataset and was not fine-tuned. We report the result
of using the model as-is on the RFSG and FOVA datasets. In the
case of the detectors, we report the result of within dataset speaker-
dependent, within dataset speaker-independent, and cross-dataset
speaker-independent models separately. We follow the reporting
requirements for the AVA-ActiveSpeaker dataset in reporting the
mean average precision (mAP) scores for each model. Average
precision (AP) is the average of precision scores calculated for each
recall threshold, AP =

∑
n (Rn − Rn−1)Pn , where R is the recall and

P is the precision for each threshold n. The results are reported
in terms of frame-by-frame mAP, mAP = (AP0 + AP1)/2, where
AP0 and AP1 are the AP score of the negative and positive class,
respectively.
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Model Speaker-dependent Speaker-independent Cross-dataset
RFSG FOVA RFSG FOVA RFSG FOVA

BLSTM 0.973 (0.006) 0.987 (0.002) 0.894 (0.028) 0.975 (0.004) 0.663 (0.022) 0.685 (0.012)
TCN 0.966 (0.004) 0.986 (0.002) 0.891 (0.038) 0.976 (0.002) 0.638 (0.024) 0.702 (0.011)

PerfectMatch - - - - 0.807 0.677
Table 1: Performance of the synchronizer and detectors. Mean mAP and standard deviation in parenthesis.

4 RESULTS
The results from all experiments are reported in Table 1, with the
mean and standard deviation of the models’ mAP. The results
from the speaker-dependent experiment are based on 10-fold
cross-validation. The best performing detector was the BLSTM.
This detector achieved a score of 0.973 on the RFSG dataset and
0.987 on the FOVA dataset. Both detectors performed similarly well
on both datasets. The results from the within-dataset speaker-
independent are based on leave-6-out cross-validation. The BLSTM
detector performed better on the RFSG dataset, reaching the score of
0.894while the TCN detector performed better on the FOVA dataset,
with score of 0.976. Both detectors performed similarly within
dataset, however there was a large difference between datasets,
where the performance on the FOVA dataset was 0.08 better. The
results from the cross-dataset speaker-independent experiment
are based on 10-fold cross-validation for the detectors and include
the performance of the synchronizer on each dataset, reported as a
single value. The PerfectMatch synchronizer performed best on the
RFSG dataset, with a score of 0.807. The detectors that had been
fine-tuned on FOVA performed significantly worse, with the mean
score of 0.651. On the FOVA dataset, the TCN detector performed
best, with the score of 0.702.

4.1 Error Analysis
In order to investigate the decrease in performance on the chal-
lenging task of cross-dataset speaker-independent detection, we
evaluated the cross-dataset models for different head poses of the
candidate speaker. In Figures 2a and 2c we report the performance
of the models across different head poses for both datasets. The
candidate speaker’s head pose was gathered on a per-frame basis
into 6 buckets spanning 20 degrees each. The performance of each
model was then calculated for all frames in each bucket. Across
all models the performance formed an inverted relationship with
the distance from the center, which is to say that the performance
tended to get worse as the candidate speaker looked further away
from the camera (i.e., profile faces). Although not always the case,
this relationship can be seen from the general concave shapes in
the figures. This observation further motivates the introduction of
information that is independent from the candidate speaker for the
task of ASD. In the next section we present the relative improve-
ment when information for the group-level focus of visual attention
is incorporated into the detection result.

4.2 Augmentation Improvement
On the RFSG dataset, the best performing augmented model re-
sulted from combining the synchronizer detection with the con-
tinuous focus of visual attention feature through multiplication.

This yielded a mAP score of 0.850. For each of the detectors on
this dataset, the multiplication with the continuous focus of visual
attention feature yielded an improvement. For the FOVA dataset,
the best performing augmented model involved combining the syn-
chronizer detection with the continuous focus of visual attention
feature through weighted averaging. This yielded a mAP score of
0.861. There was no improvement when augmentation was applied
to the detectors.

Figures 2b and 2d illustrate how each of the models performed
across the different head poses. We included the original synchro-
nizer, TCN and BLSTM detectors, and the augmented synchronizer.
The results show that the augmented model performed better across
the full range of head poses, and partially managed to correct for
the typical deterioration of performance that happened when the
head pose is at an extreme angle with respect to the camera plane.

5 DISCUSSION
As can be seen in Table 1, the state-of-the-art detectors performed
well in speaker-dependent 10-fold and speaker-independent leave-
6-out cross-validation experiments on both datasets. Both datasets
provide well-posed problems, with cameras pointed at participants’
faces and clear audio during a normal conversation. However,
when these fine-tuned detectors are applied to a new setting (cross-
dataset), we observe a significant decrease in performance. Even
though both datasets consist of seated conversations around a table,
the detectors appear to learn the distribution specific to the context
present in the dataset used for fine-tuning. Although this is a well
understood limitation of machine learning, it presents a significant
challenge for creating accurate ASD methods that can generalize
across environments and physical contexts.

Given prior work on spatial bias [22] in vision-based voice ac-
tivity detection, we investigated how spatial bias hampered the
performance of these detectors when transferred to new physical
contexts. As expected, we found that the models often performed
worse when the faces were pointed away from the camera. This oc-
curs because detection is not as good and fewer training examples
exist for faces seen in profile.

To improve the performance of the models, we utilized a feature
that is independent from the candidate speaker’s head pose. We
found that the focus of visual attention of the other group members
could be used to augment the output of the synchronizer and detec-
tors, improving the cross-dataset performance in almost all cases.
Furthermore, we found a significant improvement of the models’
performance when combined with the focus of visual attention
of the other group members across the entire spectrum of head
poses. However, when the head is turned away from the camera,

40



Group-Level Focus of Visual Attention for Improved Active Speaker Detection ICMI ’21 Companion, October 18–22, 2021, Montréal, QC, Canada

(a) Models on RFSG (b) Augmented model on RFSG (c) Models on FOVA (d) Augmented model on FOVA

Figure 2: Performance of all cross-dataset speaker-independent models. The Y -axis is the models’ mAP for different head
poses in the range [−60, 60] degrees. (a) and (c) show the performance the original detectors and synchronizer on each dataset.
(b) and (d) show the improved performance of the synchronizer augmented with VisualAttention features.

the increase is larger than when the candidate speaker is facing the
camera.

Despite their similarities, the RFSG and FOVA datasets have
significant differences due to their set ups and physical arrangement.
The distribution of head poses for the FOVA dataset is bi-modal,
caused by the seating of 3 people evenly around a circular table.
The RFSG distribution is a steep unimodal curve, likely caused
by the shape of the table and the location of the robot on that
table. The fine-tuned detectors are well suited to the distributions
of the respective datasets, leading to a poor fit when faced with
the challenge of transferring to a new dataset. However, this type
of distribution shift is expected every time the ASD models are
employed in new interactions.

6 CONCLUSION & FUTUREWORK
In this work we show how a simple group-level focus of visual
attention feature can improve the performance of a general purpose
synchronizer to above the level of fine-tuned detectors on the task of
context- and person-independent active speaker detection.We show
that, even when employed on similar datasets, fine-tuned detectors
struggle to generalize well. We demonstrate that spatial bias can
contribute to performance degradation and offer an investigation
of the possible causes and remedies for this important problem. The
proposed methods utilized simple but effective approaches such as
averaging and multiplying for augmentation. Our future work will
explore improved ways for combining the detection and group-level
focus of visual attention of the models. We will also benchmark our
approach to general active speaker detection on public datasets.
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