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ABSTRACT
In this work we address the Next Speaker Prediction sub challenge
of the ACM ’21 MultiMediate Grand Challenge. This challenge
poses the problem of turn taking prediction in physically situated
multiparty interaction. Solving this problem is essential for enabling
fluent real-time multiparty human-machine interaction. This prob-
lem is made more difficult by the need for a robust solution that
can perform effectively across a wide variety of settings and con-
texts. Prior work has shown that current state-of-the-art methods
rely on machine learning approaches that do not generalize well to
new settings and feature distributions. To address this problem, we
propose the use of group-level focus of visual attention as additional
information. We show that a simple combination of group-level
focus of visual attention features and publicly available audio-video
synchronizer models is competitive with state-of-the-art methods
fine-tuned for the challenge dataset.

CCS CONCEPTS
• Computing methodologies → Neural networks; Supervised
learning; Unsupervised learning; • Human-centered computing
→ Collaborative interaction; Laboratory experiments.
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1 INTRODUCTION
Understanding and predicting changes in participant roles on the
conversational floor (i.e., speaker, addressee, bystander), known as
footing [5, 6], is a prerequisite for most natural and effective human-
machine interaction. To fluently participate in a situated, multiparty
conversation, a system must understand when the speaker will take
and relinquish their turn, known as next speaker prediction and turn
taking prediction.
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Turn taking prediction has been formulated in many ways, and
requires estimating which members of the group, if any, will be
speaking at a future point in time [18], in order to interact with an
individual or a group without excessively long pauses and without
interrupting/cutting into other group member’s turns.

While most people can perform turn taking prediction in com-
plex multiparty settings with relative ease, computers struggle
to do so accurately even in simple settings. The task is inher-
ently multimodal, requiring accurate synthesis of and reasoning
about visual, auditory, and linguistic information. In physically
situated interactions this challenge is amplified by perceptual limi-
tations, e.g., monocular cameras and far-field microphones. Addi-
tionally, natural conversations can be noisy, with overlaps, cut-ins,
and backchannels that can blur the distinction between the active
speaker and other group members.

Given these challenges, it is helpful to incorporate information
beyond the candidate speaker’s own visual and auditory data. Such
information can include objects of interest in the environment and,
in the case of multiparty interactions, it can include information
from other group members, such as their focus of visual attention.

In this work, we utilize group members’ focus of visual atten-
tion along with publicly available audio-video speech synchronizer
models to demonstrate a competitive, dataset agnostic method for
turn taking prediction on the ’21 MultiMediate Challenge [9–11].
Our prior work (under review) has shown that this simple combi-
nation can achieve state-of-the-art (SOTA) results when working
across similar datasets. Here, we evaluate our method against prior
SOTA models on the challenge’s validation set and against the
newly developed models submitted to the challenge’s hidden test
set, showing competitive performance in both cases.

2 BACKGROUND
Turn taking in spoken dialogue systems is the coordination of
system speech with the person or persons with whom the system is
speaking. Turn taking modeling can be formulated as the process of
estimating whether or not a given group member will be speaking
at a future point in time, also known as next speaker prediction.
Turn taking is commonly defined as having four cases: hold, when
a person is talking and continues to do so; yield, when a person is
talking and is about to stop; take, when a person is not talking but
will start to talk; and listen, when a person is not talking and will
continue to not talk. Prior turn taking decision modeling typically
addresses the yielding and holding cases. These models estimate
whether a person is yielding or holding when a short pause occurs
during their speech. Continuous turn taking makes a prediction
about future speech in order to address all four cases. Skantze [18]
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provides a comprehensive review of the history and state-of-the-art 
in turn taking methods.

The first model of continuous turn taking was introduced in 
Skantze [19], built to support an autonomous multiparty robot in 
an interactive museum. The approach predicted a vector of speech 
activity 60 frames or 3 seconds into the future using a multimodal 
Long Short-Term Memory network (LSTM). The model incorpo-
rated acoustic and part of speech features, but it was found that it 
performed almost as well with only the acoustic features. That sem-
inal approach has been extended in Roddy et al. [15, 16] through the 
use of a multiscale Recurrent Neural Network (RNN) architecture, in 
which different modalities were modelled in individual sub-network 
LSTMs that operated at their own independent timescales, with a 
separate LSTM that fused the modalities to form predictions at a 
regular rate. Ward et al. [21] also extended the work in [17] through 
the use of an improved multilayer LSTM utilizing parametric recti-
fied linear units and by testing the model across multiple languages 
and conversational genres. Masumura et al. [8] developed a novel 
model for end of turn detection utilizing a cross-modal representa-
tion trained with a punctuated text dataset.

In face-to-face interactions, eye-gaze is one of the best stud-
ied and strongest visual cues for coordinating turn taking and 
managing attention by dialogue partners [13]. Within the fields of 
Human-Robot Interaction (HRI) and Human-Computer Interaction 
(HCI), eye-gaze detection has already been utilized for addressee 
and backchannel detection (e.g., [1]). Eye-gaze control has been 
successfully deployed for turn signaling and control by the agent. 
Despite the theoretical importance of eye-gaze in group interac-
tions and the use of eye-gaze in HRI and HCI, eye-gaze remains an 
underutilized feature for active speaker detection and turn taking 
prediction, inspiring the work in this paper.

3 METHODS
The goal of the methods described in this section is to detect the 
speaking state (i.e., speaking or not speaking) of all visible faces in 
a physically situated multiparty interaction at some point in the 
near future (i.e., turn taking prediction).

3.1 Task Definitions
Given a fixed context window of sensor data pertaining to a number 
of potential speakers, turn taking prediction consists of the task 
of determining which speakers will be active at some fixed point 
in the future, by using information from the current point in time. 
The MultiMediate Challenge formulates the problem of predicting 
the state of each potential speaker (i.e., speaking or not speaking) 
as a binary classification task, with independent labels for each 
potential speaker.

3.2 Models
The backbone model used in this work is the SOTA audio-video syn-
chronizer termed PerfectMatch [4]. Following the state-of-the-art 
in active speaker detection [2], the synchronizers are further turned 
into predictors by adding a Temporal Convolution Network (TCN) 
and a Bidirectional Long Short-Term Memory (BLSTM). Here we 
propose models that augment the synchronizers and predictors with 
information about the group member’s focus of visual attention.

3.2.1 Features. Our work combines two sets of features: Perfect-
Match and VisualAttention features. Next, we describe how those
features are computed.

PerfectMatch – Chung and Zisserman [3] trained a Convolu-
tional Neural Network (i.e., SyncNet) to produce audio and video
embeddings for the purpose of synchronizing audio and video
tracks of individuals talking. The network consisted of 6 convolu-
tional layers followed by 2 fully connected layers for separate audio
and video. The model took as input 5 video frames and the corre-
sponding audio samples. This model has been shown to be effective
for active speaker detection by comparing the magnitude of the dif-
ference between the final audio and video features and smoothing
with a median filter. Chung et al. [4] re-trained the original SyncNet
model for the purpose of synchronizing audio and video tracks of
individuals talking. The new model (i.e., PerfectMatch) was shown
to outperform the original SyncNet model. The output of the final
convolutional layer from the PerfectMatch model that had been
pre-trained on VoxCeleb [12] was directly used to produce 512𝐷
audio and 512𝐷 video features for each frame.

VisualAttention – The visual attention features are inspired by
Stefanov et al. [20] and include continuous and binary representa-
tions of whether or not a group member is looking at the candidate
speaker. The binary representation considers the group member
to be looking at the candidate speaker if the group member’s head
pose is pointed closer to the candidate speaker than the head pose of
any of the other group members. Looking at the candidate speaker
is represented by a 1, otherwise a 0. For the continuous representa-
tion, the angle between the head pose of the group member and the
vector between the head of the group member to the head of the
candidate speaker is then used as a measure for how far away they
are looking from the candidate speaker. This angle is normalized
using,

f = 1 − 𝜃/𝑞 (1)
where f is the feature from that group member to the candidate
speaker and 𝜃 is the angle between the group member’s head pose
and the candidate speaker-group member vector and q is a normal-
ization factor based on the field of view of the group member.

In both the continuous and binary cases we created the mean
VisualAttention feature for the candidate speaker by averaging the
features produced by the other group members with respect to that
candidate speaker. This produced a single value for the average of
the continuous and binary features. The closer this value was to 1,
the more likely the individual was to be the focus of attention of
the group; conversely, the closer the value was to 0, the more likely
it was that the individual was not the focus.

3.2.2 Model Architecture. The synchronizer model architecture
is described in [3]. This includes a window of 5 frames of video
and the corresponding audio which produces 512𝐷 audio and video
embeddings. These embeddings are cross-correlated to find the
minimum difference (the matching synchronization), then the dif-
ference between the embeddings is median filtered and normalized
for each video. This produces a single value between 0 and 1 which
is used as the confidence that the candidate speaker is speaking. The
synchronizer utilizes the entire video as context for determining
the median, and thus is not suited for real-time use.
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Figure 1: The augmented VisualAttention synchronizer consists of a speech activity confidence score generated by the Perfect-
Match model for the candidate speaker and the group attention score for each group member except the candidate speaker
from the latest available frame. The figure shows the method for generating continuous rather than binary VisualAttention
features. Group attention and speech activity are combined to produce a label estimate for future speech for the candidate
speaker. This is repeated for all group members in the interaction.

The predictor model architectures are described in [2]. A win-
dow of 5 of the 512𝐷 audio and video embeddings from each frame
are used as input to a 2 layer time series model before being com-
bined into a fully connected layer. The fully connected layer is then
connected to a softmax layer to produce the final output proba-
bilities. As in [2], we used both a Temporal Convolution Network
(TCN) and a Bidirectional Long Short-Term Memory (BLSTM) as
the time series models. These models do not require the full video
context and can be used in real-time applications.

The VisualAttention augmented models combined the out-
put of the synchronizer and predictors described above with the
mean VisualAttention feature described in 3.2.1. To augment the
predictions of the synchronizer and predictor models, which were
also between 0 and 1, we multiplied the confidence value with the
VisualAttention feature, which was shifted from [0, 1] to [0.5, 1.5]
to allow the feature to adjust the model confidence. The full ar-
chitecture for the VisualAttention augmented synchronizer can be
seen in Figure 1.

4 EXPERIMENTS
This section describes the dataset used to train and evaluate the
turn taking predictors and the general experiment setup.

4.1 Datasets
The ’21 MultiMediate Challenge used the published MPIIGroupIn-
teraction dataset [10]. The dataset consists of 22 German language
conversations between three to four people, each with an approxi-
mate length of 20 minutes. Participants in each conversation were
instructed to discuss a controversial topic and were recorded by 8

frame-synchronised video cameras and 4 microphones. The chal-
lenge provides the recording from all cameras (one from behind
each participant) and one of the microphones for each session. Ev-
ery frame of each recording is labelled with a binary representation
of who is speaking.

4.2 Experimental Setup
4.2.1 Model Implementation. The synchronizerwas implemented
with a SOTA pre-trained model. The model was pre-trained on
VoxCeleb [12], which may contain significantly different data dis-
tributions than the challenge datasets.

The predictors were implemented and trained as described
in [2]. The input features from the synchronizer were held constant
and the TCN and BLSTM models were trained on the MPIIGroupIn-
teraction dataset for each experiment. The training was imple-
mented in PyTorch [14]. The models were trained for 25 epochs,
with a batch size of 64. The Adam [7] optimizer was used with the
default parameters (𝛼 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜖 = 10−8)
and a fixed learning rate of 0.001. The loss was calculated with the
cross entropy loss function.

The VisualAttention augmented models required additional
processing to generate the features for this dataset. In the MPI-
IGroupInteraction dataset, the position of the cameras was not
publicly available, so the positions of the group members relative to
each other was estimated. The cameras were not centered exactly
for each group member but were consistent across all sessions, so
the estimates were created using the distributions in the training
set of head poses for each group member when the other group
members were speaking. For the binary representation, this esti-
mation was accomplished by dividing the head yaw rotation of
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all participants in a given seat into three equal quantiles, where 
one quantile was assigned to the person to their left, one across, 
and one to their right. When the direction a participant was facing 
was within a given quantile, the participant was considered to be 
looking at the seat in that quantile and and not at the other two. 
Creating a continuous representation requires a more exact method 
for estimating the location of a given participant relative to each 
of the others. This was accomplished by taking the mean of the 
distribution of head yaw rotations when each of the other group 
members was speaking and using it as a proxy for the location of 
that group member.

4.2.2 Model Evaluation. Each of the models was evaluated on the 
validation set provided by the ’21 MultiMediate Challenge organiz-
ers. The VisualAttention Augmented Synchronizer was evaluated 
on the hidden test set, as the intention of this work is to evaluate 
the model that was found to generalize best to new datasets in our 
prior work.

We follow the reporting requirements for the ’21 MultiMediate 
Challenge in reporting the unweighted average recall scores (UAR). 
Here, metrics are calculated for each candidate speaker and their 
unweighted mean is found, where the unweighted recall score for 
each candidate speaker is defined as:

R = tp/(tp + fn) (2)
where R is the recall, tp is the number of true positives, and fn is
the number of false negatives.

5 RESULTS
This section reports the results of the experiments described in
Section 4.

Challenge Validation Set
Model Binary Aug. Continuous Aug.

BLSTM Predictor 0.719 0.747
TCN Predictor 0.572 0.721
Synchronizer 0.692 0.715

Table 1: UAR performance of models augmented by Binary
and Continuous VisualAttention features on the validation
set provided by the MultiMediate competition.

The results of the experiment on the ’21 MultiMediate valida-
tion set are reported in Table 1. The best performing model was
the BLSTM. The synchronizer augmented with continuous Visu-
alAttention features performed only slightly worse than the SOTA
BLSTM and TCN predictors augmented with VisualAttention, by
−0.032 and −0.006, respectively, both of which have been explicitly
fine-tuned on the ’21 MultiMediate training set.

For the competition test set we submitted the synchronizer aug-
mented with continuous and binary VisualAttention features. The
binary features performed worse than the continuous, with a score
of 0.628 and 0.632, respectively. The provided baseline was 0.51.
Both submissions achieved SOTA performance, outperforming all
other competitors.

Challenge Test Set
Authors Binary

Ours (Cont. Aug. Synchronizer) 0.632
Ours (Binary Aug. Synchronizer) 0.628

HNU VPAI 0.57
Jiangeng 0.53

MM Baseline 0.51
Table 2: UAR performance of competitor models and our
synchronizer model augmented by Binary and Continuous
VisualAttention features on the held-out test set provided
by the MultiMediate competition.

6 CONCLUSION
In this work we show how simple focus of visual attention features
can improve the performance of general purpose synchronizers to
be competitive with SOTA methods on the ’21 MultiMediate Next
Speaker Prediction Challenge. While the calculation of VisualAtten-
tion features requires an understanding of the physical relationship
between individuals in a scene, it does not require the retraining
or fine-tuning of another model. These models do not outperform
SOTA models that have been fine-tuned for a specific setting, as
can be seen in the validation results, but our prior work (under
review) has shown they can outperform when transferred to new
scenes without an existing dataset and where fine-tuning is not
possible.

It is important to note that the PerfectMatch synthesizer models
used for this competition were not trained for next speaker predic-
tion but for active speaker detection. The augmentation with visual
focus of attention features may help for the turn taking and turn
yielding cases, but this requires further investigation. Additionally,
because the ’21 MultiMediate Challenge utilized multiple cameras
without providing their relative location to one another, in this
work we utilized crude, approximate measures of visual attention.
Future work will attempt to utilize more fine grained measures
of visual attention. Additionally, the presented work utilized the
simple method of multiplying for feature augmentation. In future
work we will develop better ways for combining these features.
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