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Abstract— An extensive body of research has examined how
specific emotional expressions shape social perceptions and
social decisions, yet recent scholarship in emotion research has
raised questions about the validity of emotion as a construct. In
this article, we contrast the value of measuring emotional ex-
pressions with the more general construct of expressivity (in the
sense of conveying a thought or emotion through any nonverbal
behavior) and develop models that can automatically extract
perceived expressivity from videos. Although less extensive, a
solid body of research has shown expressivity to be an important
element when studying interpersonal perception, particularly
in psychiatric contexts. Here we examine the role expressivity
plays in predicting social perceptions and decisions in the con-
text of a social dilemma. We show that perceivers use more than
facial expressions when making judgments of expressivity and
see these expressions as conveying thoughts as well as emotions
(although facial expressions and emotional attributions explain
most of the variance in these judgments). We next show that
expressivity can be predicted with high accuracy using Lasso
and random forests. Our analysis shows that features related to
motion dynamics are particularly important for modeling these
judgments. We also show that learned models of expressivity
have value in recognizing important aspects of a social situation.
First, we revisit a previously published finding which showed
that smile intensity was associated with the unexpectedness of
outcomes in social dilemmas; instead, we show that expressivity
is a better predictor (and explanation) of this finding. Second,
we provide preliminary evidence that expressivity is useful for
identifying “moments of interest” in a video sequence.

I. INTRODUCTION

Inspired by the pioneering work of Paul Ekman and
early appraisal theories [1], much of the work in affective
computing follows a “standard model” which argues that: (1)
events of personal significance to an individual are appraised
and trigger an emotional response and (2) this response
is reflected in external emotional signals, especially facial
expressions, as a window into the affective state [2] and
(3) these expressions influence the behavior of perceivers
(e.g., through contagion or inferences about the senders’
affective state) [3] [4]. In line with these views, many studies
have collected data of social interactions, examined facial
expressions, and made predictions about significant events.
Vinkemeier et al. [5] tried to predict poker folds from face
reactions to events in a poker game. Hoegen et al. [6] tried
to predict cooperative or noncooperative responses based on
facial reactions to events in a social dilemma. Mussel et al.
[7] found that offers in an ultimatum game were more often
accepted if the proposer smiled and less often accepted if
the proposer showed angry facial expression.

However, the predominant view in emotion research today
is that the “standard model” is incorrect, or at least requires

significant qualification. For example, Jack et al. [8] and Du
et al. [9] argue that emotions are neither basic or universal.
Others see emotional expressions as communicative acts that
shape social encounters [10]. Thus, they are not necessarily
a reflection of the underlying emotional state [11], and share
much with other communicative acts (words, gestures) [12].

If the “standard model” is incorrect, it provides opportuni-
ties to approach old questions from a new perspective. In this
article, we consider several research questions using a corpus
of spontaneous reactions to personally significant events. (1)
Are facial expressions the best indicators that something
personally significant has just happened to an individual,
or are other nonverbal behaviors equally diagnostic? (2)
What behaviors do perceivers use to make inferences that
something significant has occurred to this individual? Are fa-
cial expressions predominant, or are other behaviors equally
important? (3) What temporal aspects of these behaviors
are crucial for supporting these inferences [13][14]? (4)
Do perceivers see these expressions as emotional, or do
they feel they communicate thoughts? In addressing these
questions, we step back from a focus on facial expressions
and consider a more general construct of expressivity. (5)
Could the perception of expressivity lead to better social
inferences and predictions? Specifically, we address these
questions in the context of a social dilemma. From Amazon
Mechanical Turk, we crowdsource judgments of the extent to
which a person is reacting to significant events in an iterated
prisoner’s dilemma and how expressive they are. We collect
information on what behaviors the observers used to make
these judgments (face, head, body, hands). Then we build
an automatic recognizer that predicts observers’ judgments
on expressivity. Our findings suggest that the observers
made inferences about the senders’ expressivity based on
the temporal dynamics of nonverbal behaviors, and that they
attend mostly to people’s facial expressions. We also show
that expressivity predicted by our model outperforms specific
facial expressions (smiles) in predicting significant events.

II. RELATED WORK

A. Expressivity as a Construct

Although emotion and affective computing research has
emphasized the importance of specific facial expressions,
researchers of nonverbal communication (and, indeed, the
face and gesture community) have taken a broader view of
nonverbal signals. Within this broader tradition, nonverbal
expressivity (i.e., the presence and strength of behaviors that
convey some thought or emotion) has been shown to have a
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profound impact on interpersonal perception and outcomes
[15]. For example, work by Burgoon et al. [16] and Berneiri
et al. [17] characterized expressivity in terms of presence and
dynamics of facial movements, gestures, and posture, and
they found that expressivity was a primary factor in the estab-
lishment of rapport between speakers. Even when this work
has emphasized emotional behaviors, but has considered
the presence of emotional expressions in toto, rather than
examining the presence of specific expressions. Similar to
expressivity, past work from the face and gesture community
has also taken a holistic approach, Hernandez et al. [18]
built a model with face and head gestures to automatically
measure the engagement level of TV viewers. Admittedly,
not all nonverbal behaviors are necessarily expressing a
specific emotion. Therefore we could potentially benefit from
learning them with a more generalized construct.

Expressivity has been examined from various perspectives.
For example, Boone and Buck [19] considered expressiv-
ity “as the accuracy with which an individual displays or
communicates his or her emotions.” From an evolutionary
perspective under the context of a social dilemma, they
argued that emotional expressivity signals trustworthiness
and serves as a marker for cooperative behaviors. In clinical
research, expressivity also plays a critical part in studying af-
fective features and the disorders of social interactions among
psychiatric patients. A severe reduction in facial expressivity
or irregularity in nonverbal production, is associated with
conditions such as schizophrenia, depression, autism, and
Parkinson’s Disease. Evidence had shown that schizophrenia
patients displayed atypical expressions and were less facially
expressive than controls [20], even so when they experienced
as much emotion [21]. Girad et al. [22] found that when
symptoms were severe, patients with depression regulated
interpersonal distance by displaying more facial action units
associated with negative emotion and less associated with
positive emotion. A recent meta-analysis [23] suggested
that facial expressions of people with autism are atypical.
Georgescu et al. [24] advocated to use virtual characters to
assess and train individuals with high-functioning autism,
and further help them improve social skills. Buck et al.
[25] proposed a technique to study the emotional expression
and communication style of behaviorally disordered chil-
dren and schizophrenic patients and their family members.
Mounting evidence has suggested that advance in automatic
recognizing and understanding of expressivity could help us
better study social interaction and help develop diagnostic
and treatment tools for clinical assessment.

B. Measuring and Predicting Expressivity

Traditionally expressivity was measured either by self-
assessment (sender) or by experts conducting time-
consuming manual annotations (observer). Tickle [26] devel-
oped a rating protocol for the observers to measure expres-
sive behavior for patients with Parkinson’s Disease. Kring
et al. [27], Gross and John [28] built two well-validated
self-assessment tools to measure the extent to which people
consider themselves “outwardly exhibit emotions” or “reveal

feelings.” The questionnaires ask people to rate themselves
on questions such as “I display my emotions to other
people” or “No matter how nervous or upset I am, I tend
to keep a calm exterior.” These tools assess the expressivity
of oneself as a personality trait, and they emphasize that
the definition of emotional expressivity is not limited to a
specific emotion (though [28] provides subscales of positive
expressivity and negative expressivity), or limited to a spe-
cific modality/channel of expression. Among all modalities,
facial expressivity has been studied most extensively. Along
with the advancement in computer vision, researchers can
integrate automatic facial expression recognition tools to gain
insights into facial expressivity measurement. Neubauer et
al. [29] used tracked facial expressions to represent facial
expressivity directly; Wu et al. [30] developed a more
nuanced arithmetic calculation based on Tickle’s protocol.

To distinguish current work from self-report of the
senders’ emotional expressivity, we focus entirely on per-
ceived expressivity from the perspective of the observers.
More importantly, we aim to build an automatic predictor
of perceived expressivity. There is little work done simi-
larly. To study patients with Parkinson’s, Joshi et al. [31]
acquired ground truth ratings based on Tickle’s protocol, and
built machine learning models to predict expressivity from
automatically tracked facial features. More recently, Lin et
al. [32] investigated the perceived expressiveness of senders
participating in different emotional tasks, and they found
nonverbal features associated with perceived expressivity
differed by emotional contexts. Though in our context of a
social dilemma, senders might experience different emotions.
We do not draw such distinction, and instead, focus our
investigation on how different modalities, and their temporal
dynamics, interact to determine perceived expressivity.

III. EXPRESSIVITY CORPUS

To examine the importance of expressivity as a con-
struct, we identified an existing large corpus of individuals
spontaneously reacting to personally significant events, and
recruited a large panel of crowd workers to annotate the
perceived expressivity of these reactions.

A. Iterated Prisoner’s Dilemma Corpus

The iterated prisoner’s dilemma is a standard social
dilemma that is often used to study emotional reactions and
the role facial expressions play in shaping joint decisions
(e.g., [33], [3]). To study expressivity, we used the USC
Iterated Prisoner’s Dilemma (IPD) Corpus containing more
than 6000 spontaneous nonverbal reactions to decisions in
this game [34]. The IPD Corpus contains videos of 716
individuals (51% female, age 18-65) playing a web-based
version IPD modeled after the UK TV show Golden Balls.
The study was approved by the Institutional Review Board
(IRB) of University of Southern California. Participants were
recruited from Craigslist and played ten rounds with the
same opponent that they were randomly paired with. In each
round, players simultaneously chose either to split or to steal,
and received points based on a playoff matrix. To guarantee
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nonverbal interaction, players could not talk to each other and
could only see each other’s body above the chest through
a webcam (Fig.1). To ensure players were engaged and
motivated to perform, they were compensated based on their
decisions in the game. In addition to a $25 participation fee,
they received lottery tickets based on the points they earned,
and these were entered into seven $100 lotteries. Since our

Fig. 1. Each player gets 5 tickets if both choose to cooperate (split), 1
ticket if both choose to defect (steal). When the player chooses to cooperate
(split) and their opponent chooses to defect (steal), the player gets nothing
while their opponents gets 10 tickets.

goal is to study perceived expressivity, we focus on the most
eventful video segments (seven seconds) where players show
their reactions to the game result following each round.

B. Annotation Task

Crowd workers rated randomly selected videos, each video
depicting a single player of the moment they learned the
outcome of one of the rounds of their game. Annotators
were told these videos showed players’ reactions within a
two-person game, but were not told the specific outcome of
the joint decision. Workers were asked to rate the individual’s
expressivity. As our goal was to understand the specific
behaviors that workers’ used to make these judgments, crowd
workers were asked which component of the body con-
tributed to their judgment. As another goal was to understand
if perceivers view these behaviors as strictly emotional, we
asked crowd workers to indicate the extent to which the
reaction conveyed a thought or emotion. Finally, we asked
crowd workers to provide a brief description of what they
felt was expressed (see questions in Section III-B.2).

1) Annotators: We recruited 274 crowd workers from
Amazon Mechanical Turk to rate a subset of 1000 video
segments from IPD. Videos from participants who declined
to share their video recordings were excluded from the rating
task. Each crowd worker rated 20 randomly presented videos.
They were allowed to watch each video as many times as
they wanted to.

2) Inter-rater Reliability: Intraclass correlation coefficient
(ICC) was calculated to assess if crowd workers were able
to provide consistent responses. Each video was rated by
a different group of (randomly selected) observers, and we
combined these into a single mean rating for each video.
Thus, a one-way random ICC(1,k) was used [35] to assess
agreement. Due to the limitation of the randomization pro-
cess of our survey platform, we received an uneven number
of ratings for each video. Most videos received 5 or 6 ratings,
N(5)=513, and N(6)=437. A few videos received 4 or 7

ratings, N(4)=19, and N(7)=31. To calculate ICC(1,k), we
chose k=5. Videos received only 4 ratings were treated as
one rater missing, and we randomly sampled 5 ratings for
videos received more than 5 ratings.

For each video, we asked the observers eight 7-point Likert
questions and one free form text question. For all Likert
items, we achieved overall ICC=0.76, with a 95% confidence
interval (CI) from 0.75 to 0.77. We also report ICC for each
Likert question as follows:

1) How strongly is the person reacting to the event?
(reaction, ICC=0.80, 95% CI [0.78, 0.82])

2) How expressive was the person? (expressivity, 0.80,
95% CI [0.78, 0.82])

3) What part of the body conveyed these impressions?
• facial expressions (face, 0.77, 95% CI [0.75, 0.79])
• head movements (head, 0.70, 95% CI [0.67, 0.73])
• posture movements (posture, 0.58, 95% CI [0.54,

0.62])
• hand or arm movements (hand, 0.62, 95% CI

[0.58, 0.66])
4) To what extent does the person seem to be expressing...

• emotion (emotion, 0.78, 95% CI [0.75, 0.80])
• a thought or concept other than emotion (thought,

0.27, 95% CI [0.19, 0.34])
5) In as few words as possible, what thought or emotion

is being expressed?
Inter-rater reliabilities are all within reasonable range

except for the thought item. In other words, the observers
agreed on the extent to which people were expressing
emotion, but had different opinions on whether a thought or
concept other than emotion was being expressed. To examine
in greater detail, we did further analysis with the texts the
observers described in Section III-B.4.

3) Analysis of ratings: We perform statistical analysis
to understand how the observers made inferences from all
modalities. As shown in Fig.2, we see a very high correlation
between reaction and expressivity (Pearson’s r=0.97). As
observers considered these two questions almost identical,
we collapse them and use the mean of the two items as
an expressivity score for the ground truth of our predictive
models in the next section. Expressivity and reaction corre-
lates the most with face (r=0.92) among other modalities. To
examine how much these modalities contribute in conveying
the impressions to the observers, we fit a multiple linear
regression with standardized face, head, posture and hand to
explain composited expressivity score. The model was highly
significant (F=6.03, p<.0001), and all modalities combined
explain 90.7% (R2) of variance in expressivity score. Not
surprisingly, face contributed the most (β=0.73, p<.0001),
head (β=0.15, p<.0001) and posture (β=0.15, p<.0001)
contributed almost the same but much less than face. Last,
Hand had a very small but significant contribution, β=0.03,
p=0.02.

We can also see in Fig.2, emotion is highly correlated
with reaction and expressivity (r=0.94). It suggests that the
more expressive the observers considered the person was, the
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Fig. 2. Pairwise correlations (Pearson’s r) among rating tasks. We choose
Pearson’s r after visual inspection of each rating item’s histogram. All items
fairly follow a normal distribution except head, posture and hand.

more confident they were that the person was expressing an
emotion. Emotion’s high correlation with face (p=0.93) tells
us that the more the observers perceive expressivity from
people’s face, the more likely that the observers consider the
person to be expressing an emotion.

4) Analysis of open-ended responses: We used the open-
ended descriptions of reactions to get a sense of what
was being conveyed. As one of our research questions was
to understand if nonverbal behaviors conveyed more than
emotion, we grouped videos into four categories based on
the observers’ ratings for the emotion and thought items.
Specifically, for emotion item, we performed median splits
to divide videos into “high emotion” or “low emotion.”
Similarly, we used the thought item to divide videos into
“high thought” or “low thought.” For each video, we concate-
nated the text descriptions provided by each crowd worker,
removed stop words, and stemmed the rest. Then we calcu-
lated term frequency-inverse document frequency (TFIDF)
for the combined texts. TFIDF is a common weighting
scheme in text analysis [36]. A higher value means the
word appears more often in a certain group after taking
into consideration that this word might appear more often in
general among all groups. Words with the highest ten TFIDF
scores for each group are shown in Fig.3. Most noticeably,
these descriptions differ by the extent to which the observers
perceived people were expressing emotion, and there is no
such difference on thought dimension. Videos perceived as
highly expressing emotion are associated with words such
as “happy,” “amusement,” “joy,” and “surprise,” otherwise
associated with words such as “boredom,” “concentration,”
“interest,” “confusion,” and “neutral.”

IV. PREDICTING PERCEIVED EXPRESSIVITY

In this section, we introduce how we build models that can
predict perceived expressivity from features automatically

Fig. 3. Representative words (stemmed) described by observers.

extracted from videos.

A. Feature Extraction

Here we describe how visual features are automatically
extracted, and (in the next section) grouped to capture modal-
ity of “face,” “head,” and “posture.” We do not have proper
measures for “hand,” and we also think it is reasonable
to disregard it due to its limited contribution to observers’
perception.

1) Facial Expressions: A commercial software based on
CERT [37] is used to track the intensity of 20 frame by frame
Action Units (AUs) [38]. We also construct six facial factors
based on [39]. In this recent work, they performed factor
analysis on AU features and discovered six psychologically
meaningful factors; the factors are Enjoyment Smile (F1),
Eyebrows Up (F2), Open Mouth (F3), Mouth Tightening
(F4), Eye Tightening (F5) and Mouth Frown (F6). For each
AU and facial factor, velocity is also calculated to describe
the velocity of change in intensity. Then we compute the
average, standard deviation, and max for each of the signals.
Thus each signal is represented by six features in total. Past
work has suggested that AU’s activation rate varies. It is also
known that automatic tracking software’s detection accuracy
varies by AU as well. Indeed what we have seen in IPD
supports these views. Taking these views into consideration,
we create composite facial signal features from AUs with at
least a minimal activation rate. The activation rate of AU was
calculated across the entire IPD corpus. Ten of them were
activated at least 15% of all frames. Six composite features
were created by summing up values across ten activated AUs.

2) Facial movements: ZFace [40] was used to track 49
facial landmarks. Similar to [41], for each one of the facial
landmarks, we calculated the current frame’s displacement
from the mean position of the individual. Then we calculated
the velocity of displacement. Principle component analysis
was performed on both displacement features and velocity of
displacement features to reduce 49 facial landmarks to two
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dimensions (94%, 86% variance was preserved respectively).
Finally, we calculated average, standard deviation, and max
values for landmarks’ displacement and velocity as landmark
features.

3) Head movements and gestures: ZFace was also used
to track head orientations in three directions (pitch, yaw,
and roll). Similar to processing facial landmarks, for each
direction, displacement from the individual’s mean and the
velocity of displacement were calculated. Then we calcu-
lated average, standard deviation, and max values for each
direction as head movement features. In addition, we used
the head gesture detector described in [42] to get frame by
frame head nod and head shake binary prediction. Then for
each video, we counted the number of head nods and head
shakes as head gesture features.

4) Optical Flow: Optical flow captures movement be-
tween consecutive frames caused by either motion of image
objects in the frame or by moving the camera. In IPD, videos
were recorded from a webcam attached to a desk monitor.
Thus motion captured by optical flow can only be contributed
by movements of player.1 As seen in Fig. 1, the camera
captures a player’s body part above the chest, so optical flow
could potentially provide us with additional information of
posture movement. We computed dense optical flow using
OpenCV’s implementation of Gunner Farneback’s algorithm
[43]. For each frame, we took the sum of flow magnitude
across all pixels. Then we calculated average, standard
deviation, and max values as our flow features.

B. Modalities, Feature Sets, and Label

We group the extracted features by modality.
1) Baseline: In past work, the sum across averaged AUs

or the count of the six basic emotion label occurrences (joy,
surprise, sadness, anger, disgust, and fear) were often used
directly as an estimate of total expressivity [29] [44]. In line
with this, we use 19 averaged AUs2 as our baseline feature
sets.

2) Face Feature Set: All the facial expression features are
included in the Face Feature Set; we have 156 features in
total.

3) Head Feature Set: All the head movement and gesture
features are included in the Head Feature Set; we have 26
features in total.

4) Posture Feature Set: Though we do not have fea-
tures that are directly tracking body postures, during our
exploratory analysis we found that facial landmark features
and optical flow features best described posture movements.
Heuristically, the positions of landmarks are very likely to
move while one changes their posture. Optical flow features
capture visual movements between consecutive frames; thus
posture movements should be captured among others. We
have a total of 21 posture features.

1We noticed that in some videos, the experimenter’s movements in the
background could also be captured by the camera. One limitation of this
method is that we cannot filter this noise.

2[37] outputs AU1, AU2, AU4, AU5, AU6, AU7, AU9, AU10, AU12,
AU14, AU15, AU17, AU18, AU20, AU23, AU24, AU25, AU26, AU28 and
AU43. All AUs except AU43 (Eye Closed) were included in our analysis.

5) Dynamics: Within each modality, we categorize fea-
tures as dynamic or non-dynamic. Features describing stan-
dard deviation or max of values or features describing veloc-
ity are considered as dynamic features. Features describing
averaged values or count numbers are non-dynamic. Thus
for each unimodal, we have three feature sets in total. One
includes all features in the modality, one includes all the
dynamic features, and one includes all the non-dynamic fea-
tures. In addition to unimodals, we also present multimodal
feature sets that combine all three unimodals feature sets, all
three dynamic feature sets, and all three non-dynamic feature
sets.

6) Label: We use the mean of the observers rated reaction
and expressivity as perceived expressivity score, then for each
video, we would calculate the mean of all scores we received
as ground truth. However, recall in Section III-B.2, the inter-
rater reliability among the observers were acceptable but not
great. To filter relatively less reliable observers, we computed
modified z-scores using median absolute deviation (MAD)
[45] of perceived expressivity scores for each video. Then
for each crowd worker, we calculated the average of their
20 modified z-scores. Since our sample size was quite small
(4-7 ratings for each video) when calculating the modified
z-score, the common cutoff criteria of 3 MADs [46] would
not be appropriate in our case. Instead of picking an arbitrary
cutoff threshold, we removed 10% (N=28) observers with
the highest modified z-scores on average (the least reliable
observers in our task). This filtering procedure improved the
ICC of perceived expressivity score to 0.87 with a 95% CI
from 0.86 to 0.88 and ICC of overall items to 0.82 with a
95% CI from 0.81 to 0.82.

C. Methods

Since our expressivity labels were computed from a 7-
point Likert scale, we formulated the task to predict per-
ceived expressivity score as a regression problem. We used
R2 as our performance metric, which measures the propor-
tion of the variance for a dependent variable that’s explained
by variables in a regression model. Finally, we experimented
with two interpretable models.

1) Lasso: A shrinkage method for linear regression that
penalizes the size of regression coefficients with L1 regu-
larization term. The amount of shrinkage is controlled by a
constant factor λ [47]. Lasso is commonly used as a feature
selection method. In a similar context [6], lasso was used to
select features before a classifier was fit to predict a player’s
decision in IPD from game behaviors and facial expressions.
Lasso is also easy to tune with one hyperparameter λ. We
performed a grid search between 0 and 1 with a step of 0.1
to find the best λ.

2) Random Forest: Comparing to Lasso, random forests
are an ensemble method for decision tree, which is equally
interpretable without assuming a linear relationship between
the features and the response. We build random forests
by building several decision trees on bootstrapped training
examples to reduce variance, thus avoid overfitting [48].
Two hyperparameters were tuned with grid search in our

Authorized licensed use limited to: Monash University. Downloaded on January 14,2023 at 03:59:45 UTC from IEEE Xplore.  Restrictions apply. 



experiments: number of trees (10, 30, 50) and max depth of
the trees (4, 6, 8).

D. Experiments

For each of our feature sets, we used nested 10-fold cross-
validation to train, validate, and evaluate our models [49].
In the inner loop, we performed grid search 10-fold cross-
validation to tune hyperparameters and recorded R2 for each
fold. The best model was selected based on averaged R2

during this validation process. We then test on the outer loop
with another 10-fold cross-validation. In the outer loop, R2

was recorded for each fold, and the 10 scores were averaged
as our test score.

E. Results

Model Performance (R2) are reported in Table I. First, we
observe both models are suitable for our task, and random
forests outperform lasso in all tasks. Second, dynamic mod-
els achieved comparable results to models with combined
features in all modalities, and multimodal and face models
outperformed baseline model. We can also see dynamic
features alone are sufficient, and non-dynamic features do
not contribute additional information to explain variance in
perceived expressivity. Another important observation is that
the face feature sets perform very close to the multimodal
sets. Features from other modalities provide very little addi-
tional information. We examine the top 10 most important
features for random forests with multimodal feature sets; the
most important 8 features are related to the smile dynamics.
The standard deviation (weight=0.21) and max of velocity
(.14) of enjoyment smile factor (F1) are the most important
two features. One posture dynamic feature (max velocity
of overall landmarks, .02) and one head movement feature
(standard deviation of overall head movement, .02) are also
helpful, but the weights are relatively small.

TABLE I

Lasso Random Forests
Baseline 0.39 0.55
Multimodal 0.63 0.67
Multimodal Dynamic 0.63 0.66
Multimodal Non-dynamic 0.50 0.58
Face 0.60 0.64
Face Dynamic 0.60 0.63
Face Non-dynamic 0.39 0.55
Head 0.30 0.36
Head Dynamic 0.28 0.34
Head Non-dynamic 0.14 0.16
Posture 0.16 0.28
Posture Dynamic 0.16 0.28
Posture Non-dynamic 0.15 0.15

V. APPLICATION OF PREDICTED EXPRESSIVITY

Finally, we examined if our best-learned model of ex-
pressivity has value in recognizing important aspects of a
social situation. First, we revisit a previously published find-
ing which showed that smile intensity was associated with
the unexpectedness of outcomes in social dilemmas [50].
Instead, we show that expressivity is a better predictor (and

explanation) of this finding. Second, we provide preliminary
evidence that expressivity is useful for identifying “moments
of interest” in a video sequence.

A. Predicting Unexpectedness of Events

In recently published work, Lei and Gratch [50] made
the claim that smile intensity was a good predictor of
the unexpectedness of a decision in the iterated prisoner’s
dilemma (on the same corpus we use in this article)3.
Specifically, they calculated the observed probability that
a particular sequence of decisions occurred (for example,
mutual splits were extremely likely if players mutually-
split on the previous round, whereas a split-steal decision
following a mutual-split was very unlikely). They found that
the players’ “enjoyment smile” intensity (as measured by
the F1 feature described above), correlated highly with the
unexpectedness of an event. Their analysis also showed that
smiles were not correlated with whether the event was good
or bad for the player, thus undermining the “standard model.”

Here we examined if expressivity might better explain
this finding. We reproduced the analysis following [50] with
predicted expressivity from random forests models. Using
predicted expressivity, we could improve the correlation
(Pearson’s r) with the unexpectedness of events (Table II).

TABLE II

Smiles [50] Multimodal Face Head Posture
r 0.53* 0.76*** 0.77*** 0.67** 0.48

We see that the predicted expressivity from multimodal,
face features, and head features are all better predictors
than smiles. Recall in Fig. 2, when making judgments on
expressivity, the extent to which the observers gained insights
from the head correlates with insights gained from the face
(r=0.69), indicating that facial movements are frequently
co-occurring with head movements. Even though the head
model was not as good as multimodal and face models
in predicting the observers’ perception, and head features
contributed marginally in the multimodal model, the head
model predicted perceived expressivity still conveys impor-
tant information regarding the unexpectedness of the events
players experienced.

B. Automatically Locating Interesting Segments in Videos

We perform a proof-of-concept exploration to examine if
predicted expressivity could serve as a measure to automat-
ically locate “moments of interest” within the entire video
of an IPD game. To do this, we use our learned model of
expressivity (the random forests model with all features) and
calculate a moment-to-moment level of expressivity (moving
a 3-second long sliding window, in 1-second increments,
across the video). We then compare this continuous measure
to known events within the game. Fig. 4 shows two examples.

3“surprise” was used in the original paper to represent the unexpectedness
of events, to differentiate felt surprise from objectively measured event
likelihood we think it is more accurate to use the term “unexpectedness
of events” here
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Fig. 4. Predicted expressivity peaks after the reveal moments.

Recall in Section III, the players played 10 rounds in
each IPD game. In Fig. 4, each vertical line represents the
moment that a joint decision was revealed to both player,
following each round. The shaded area represents a moment
in time when the game was interrupted so that players
could complete a brief questionnaire about their subjective
experience. We can see that players are most expressive at the
moments when the joint-outcome is revealed. They are es-
pecially non-expressive when completing the questionnaire.
Of course, this requires more systematic analysis but the
results suggest the potential of the technique to automatically
identify moments of interest.

VI. DISCUSSION AND LIMITATIONS

In this article, we examined if nonverbal expressivity could
serve as a more useful construct for identifying significant
moments within a social interaction, in contrast to assessing
the presence or intensity of facial expressions. We collected
observers’ judgments on people’s spontaneous reactions to
significant events in an iterated prisoner’s dilemma, built a
model to predict observers’ perception of expressivity, and
with which to make inferences about the eliciting situation.

In terms of the research questions outlined at the start of
this article, we can draw several conclusions. Concerning
research questions (1) and (5), we provided evidence that
expressivity may be a better indicator that something person-
ally significant has happened to an individual, compared with
using the intensity of individual facial actions. Specifically,
we revisited a previously published claim that smile intensity

was associated with the unexpectedness of outcomes in
the IPD. Instead, we show that expressivity is a better
predictor (and explanation) of this finding. (2) We showed
that perceivers use more than facial expressions when making
judgments of expressivity. Although, by constructing learned
models, (3) we could show that perceivers mostly relied on
dynamic features of facial expressions when making these
judgments. (4) Finally, we were able to show that perceivers
see these expressions as conveying thoughts as well as
emotions, although perceivers mostly viewed these reactions
as reflecting the senders’ internal emotional state. From an
algorithmic perspective, we next show that expressivity can
be predicted with high accuracy, at least within the context
of the IPD corpus.

There are several limitations to this current work. This
research was only applied to a single corpus, and it remains
to show that these expressivity findings generalize to other
contexts and other corpora. An obvious next step would
be to examine if the predictive models learned here can
transfer to other spontaneous expression elicitation datasets.
Our conclusions about the relative importance of different
modalities must be qualified. Our model relies heavily on the
accuracy of automatic facial expression estimation, face and
head movement tracking. We used state-of-the-art trackers
in this analysis, though they are not perfect. In particular,
our approach to measuring posture is less validated when
compared with our measures of facial actions. We are also
interested in examining how end-to-end deep learning models
would perform compared to the two simple interpretable
models we presented. Though end-to-end models might be
less interpretable, they can learn the best features given the
task and do not require you to explicitly specify how different
features are combined.
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