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Abstract
This paper presents a supervised learning method for automatic
visual detection of the active speaker in multiparty interactions.
The presented detectors are built using a multimodal multiparty
interaction dataset previously recorded with the purpose to ex-
plore patterns in the focus of visual attention of humans. Three
different conditions are included: two humans involved in task-
based interaction with a robot; the same two humans involved in
task-based interaction where the robot is replaced by a third hu-
man, and a free three-party human interaction. The paper also
presents an evaluation of the active speaker detection method
in a speaker dependent experiment showing that the method
achieves good accuracy rates in a fairly unconstrained scenario
using only image data as input. The main goal of the presented
method is to provide real-time detection of the active speaker
within a broader framework implemented on a robot and used to
generate natural focus of visual attention behavior during mul-
tiparty human-robot interactions.
Index Terms: machine learning, active speaker detection, mul-
tiparty human-robot interaction

1. Introduction
Natural and effective human-robot interaction requires robots
to produce humanlike nonverbal signals. One such nonverbal
signal used by humans in daily face-to-face interactions is the
eye-gaze, or more broadly, the focus of visual attention. The
focus of visual attention can provide several cues, for example,
it can regulate who is allowed to speak when and coordinate
the changes in the roles on the conversational floor (speaker,
addressee, bystander), known as footing. Since clear conversa-
tional roles in face-to-face communication are vital for smooth
and effective interaction, a robot which is aware of the estab-
lished roles in real-time could avoid misunderstandings or talk-
ing over other participants. On the other hand, the focus of vi-
sual attention can provide cues for important events or objects
in the space shared during the interaction.

The context of the work presented in this paper is a frame-
work aimed at recognizing (human) and generating (robot) real-
time focus of visual attention to facilitate more natural and ef-
fective communication. A key component of this framework is
a system which can keep track of the active speaker in real-time
while imposing as little constraints as possible on the interac-
tion. Therefore, in this paper we describe a method of detecting
who is speaking based solely on visual input. For the purpose of
efficient real world human-robot interaction, we have two main
requirements for the method. The first one is that we should be
able to make decisions in real-time (possibly with a short lag),
which in practice means that the system should not require any
future information. In a spoken human-robot interaction sys-
tem, in practice, it is sufficient if the system can classify each

Figure 1: Spatial configuration of the setup and the location of
different sensors used in the dataset.

detected utterance as coming from a particular person by the
time it is recognized by the speech recognizer. The second re-
quirement is that the method should make as little assumptions
as possible for the environment in which the system will oper-
ate. Such assumptions can be noise-free environment, known
number of participants, or known spatial configuration.

The problem of identifying the active speaker is an impor-
tant and recurring one in many areas, and different applications
place different requirements on the solutions.

Audio-only speaker identification, know as speaker di-
arization, is the process of finding segments in the input audio
associated with different speakers. Speaker diarization has re-
ceived a fair amount of attention from researchers in the past. A
comprehensive review of the recent research in the field is done
in Miro et al. [1].

Audio-visual speaker identification approaches, on the
other hand, attempt to combine information from both audio
and video. Nock at al. [2] explore the application of audio-
visual synchrony for active speaker localization in broadcast
videos, Friedland et al. [3] present an audio-visual approach
for unsupervised speaker localization in meetings, and Zhang
et al. [4] propose a boosting-based multimodal speaker detec-
tion algorithm for distributed meetings. An information theo-
retical approach exploiting mutual correlations to associate an
audio source with regions of a video stream was demonstrated
by Fisher et al. [5], while Slaney and Covell [6] showed that
audio-visual correlation may be used to automatically find the
correct temporal synchronization between audio and a talking
face. More recently researchers have employed deep archi-
tectures (Convolutional Neural Networks and Recurrent Neu-
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Figure 2: System overview.

ral Networks) to learn active speaker detectors from audio-
visual input. Ren et al. [7] propose a multimodal Long Short-
Term Memory (LSTM) model to learn shared weights between
modalities (audio and video) and apply it to speaker naming in
TV shows and Hu et al. [8] propose a Convolutional Neural
Network (CNN) framework to learn the fusion function of face
and audio cues.

Other approaches include a general pattern recognition
framework used by Besson and Kunt [9]. Hung and Ba [10] ap-
plied visual activity (the amount of movement) and focus of vi-
sual attention as features to determine who is the current speaker
on real meeting room corpus data. Action units (AU) were used
as input features to Hidden Markov Models (HMM) in Stefanov
et al.[11]. Vajaria et al. [12] showed that body movements can
increase recognition rates.

The above approaches are either evaluated on small
amounts of data, or usability in real-time settings has not been
demonstrated. Furthermore, in many cases a certain spatial con-
figuration is assumed and the relative location of the used sen-
sors is known. Finally, the goal is usually an offline video/audio
analysis task, such as semantic indexing and retrieval of TV
broadcasts or meetings, or video/audio summarization. We be-
lieve that the challenge remains when it comes to identifying
the active speaker in more dynamic and cluttered environments.
For the purpose of generating robot’s focus of visual attention
based on the information of the active speaker we do not want
to impose limitations such as specific hardware arrangement
or participants’ location in the environment. In this paper we
present a method which has several desirable characteristics for
such types of scenarios - 1) it works in real-time, 2) it does not
assume specific spatial configuration, and 3) the possible num-
ber of (simultaneous) active speakers is free to vary during the
interaction.

2. Method
The goal is to build a system that is able to detect in real-time
the status (i.e. speaking and not speaking) of all visible faces
in a multiparty interaction. Furthermore, the system should be
able to achieve good accuracy rates given only the visual infor-
mation, i.e. the RGB color data. Finally, the system should be
able to generalize to unseen data.

We use a supervised learning approach to construct the ac-

tive speaker detectors, an overview of the system is presented in
Figure 2. In the training stage we use two inputs - video and au-
dio. In the top part of the training pipeline, the video is fed into
a face detection module [13] which attempts to locate all visi-
ble faces in the current frame. The output of the face detection
module is the RGB color data for all found faces. This infor-
mation is then fed into a CNN, in this case AlexNet [14], which
calculates an n-dimensional feature vector for each face image.
In the bottom part of the training pipeline, the audio is fed into
a Voice Activity Detection (VAD) [15] module, which creates
speech and non-speech intervals from the acoustic signal. The
intervals detected by the VAD module are then used as labels.
Finally, the features and the labels are combined into m-frame
long segments which are used by a gradient-based optimization
procedure [16] to adjust the weights of the hidden layers of an
LSTM model [17]. The LSTM model includes several hidden
layers - at the bottom is an input layer which sends frame seg-
ments of a certain length to the next LSTM layer. The LSTM
layer is followed by a stack of time distributed dense layers with
decreasing output sizes. Time distributed means that the same
weights of the fully-connected dense layer are applied to each
frame in the input sequence (sequence input - sequence output).
The final layer in the model outputs a probability distribution
over the possible outcomes (speaking and not speaking). De-
tails on the network architecture are given in Section 3.2. Since
the network performs binary classification, and the output is cal-
culated with Softmax activation function, the detection of the
active speaker happens when the corresponding probability ex-
ceeds 0.5. The evaluation is performed by computing the accu-
racy of the predictions on frame-by-frame basis.

3. Experiments
3.1. Data

The method presented in Section 2 is built and evaluated on a
multimodal multiparty dataset described in [18]. The main pur-
pose of the dataset is to explore patterns in the focus of visual
attention of humans under three different conditions: two hu-
mans involved in task-based interaction with a robot; the same
two humans involved in task-based interaction where the robot
is replaced by a third human, and a free three-party human in-
teraction. The dataset contains two parts: 6 sessions, each of
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Figure 3: Model overview. The first cell is the type of the layer.
The second cell specifies the input and the output. The last cell
is the size of the input and the output in the following format
- number of batches, batch size (number of time steps/frames),
frame size.

which is with duration of approximately 30 minutes, and 9 ses-
sions, with duration of approximately 40 minutes each. Both
parts of the dataset are rich in modalities and recorded data
streams. They include the streams of three Kinect v2 devices
(color, depth, infrared, body and face data), three high quality
audio streams, three high resolution GoPro video streams, touch
data for the task-based interactions and the system state of the
robot. In addition, the second part of the dataset introduces the
data streams from three Tobii Pro Glasses 2 eye trackers. The
language of all interactions is English and all data streams are
spatially and temporally aligned. All interactions in the dataset
occur around a round table and the participants are seated. Fi-
nally, there are 24 unique participants. Figure 1 illustrates the
spatial configuration of the setup.

3.2. Experimental Setup

All results are based on random sampling of the available data
for each subject, where ≈ 80% is used for training, ≈ 15%
is used for testing, and ≈ 5% is used validation. The video
input is generated by the Kinect directed at the subject under
consideration and the audio input is generated by his/her close-
talking microphone. The networks are trained and evaluated
with 300 frame (10 sec) long segments without overlaps. The
total size of the data used for training is 1424700 frames (≈
13 hours), the total size of the data used for testing is 266100
frames (≈ 2.5 hours), and the total size of the data used for
validation is 89400 frames (≈ 1 hour). We have trained and
evaluated a separate network for each of the 24 subjects.

For training the networks we use Adam optimizer with de-
fault parameters (α = 0.001, β1 = 0.9, β2 = 0.999, and
ε = 10−8) and categorical crossentropy loss function. The rest
of the model parameters and the model architecture are illus-

Table 1: Results per subject.

Subject Accuracy (%) Subject Accuracy (%)

1 87.77 13 77.81
2 79.43 14 79.87
3 73.14 15 79.72
4 72.15 16 78.81
5 81.59 17 75.56
6 65.87 18 76.08
7 78.85 19 78.03
8 75.87 20 75.83
9 84.75 21 78.93
10 85.10 22 85.79
11 71.81 23 77.85
12 83.38 24 73.00

Mean 78.21
Std 5.07

trated in Figure 3. All dense layers (densely-connected neural
network layers) use a Rectified Linear Unit (ReLU) activation
function except the final one (the network output layer) which
uses a Softmax activation function. Each subject specific net-
work is trained for 100 epochs and the reported results are for
the state of the network in which it has the best performance on
the validation set. The system is implemented in Keras [19]
with TensorFlow [20] backend. During the prediction stage
only the RGB color data is used as input. When evaluating the
networks’ performance, we use 0.5 as a threshold for assigning
a class to each frame-level prediction.

4. Results
This section presents the main (speaker dependent) numerical
results of the evaluation and provides a discussion on the per-
formance with illustrations of several cases. We have summa-
rized the results per subject in Table 1. The table provides the
accuracy rate per subject, as well as the mean accuracy over
all subjects. The easiest and the hardest subjects are marked
in boldface font. From the table we can see that the accuracy
varies between subjects with the lowest results around 66% and
the highest around 88%. This inter subject variability is further
confirmed by the high standard deviation.

In Table 2 we present the cumulative (for all subjects) con-
fusion matrix of the networks output. The rows in the matrix
represent the original labels (generated by the VAD module)
and the columns represent the predictions of the networks. We
use pos and neg to denote the speaking and not speaking class,
respectively. The top number in each cell is the number of test
frames. The mean accuracy is 80.75% and the balanced accu-
racy is 77.46%. The table also illustrates that the dataset used is
unbalanced, where the number of not speaking frames is signifi-
cantly larger than the number of speaking frames. This problem
is partly addressed by assigning different weights on the frames
during training of the networks (a correctly detected speaking
frame has a higher weight than correctly detected not speaking
frame).

Finally, Figure 4 illustrates the output of two networks for
some examples in the data. The x-axis corresponds to time and
the y-axis to the class label. We use 0 to denote the neg (not
speaking) class and 1 to denote the pos (speaking) class. The
output of the network corresponds to P (pos) and varies contin-
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Figure 4: Example outputs of two networks.

Table 2: Cumulative confusion matrix.

predictions
pos neg

labels
pos 59466 28225

(67.81%) (32.19%)

neg 22990 155419
(12.89%) (87.11%)

uously between 0 and 1.
In the top row, subfigures a), b), and c), besides the accu-

rate predictions of the network, we present cases which show
the ability of the network to quickly switch between decisions
even for brief intervals. Furthermore, in most cases, the network
output comes very close to the target value (that is, the P (pos)
is either very close to 0 or to 1). The subfigures also show the
granularity of the target signal obtained by the VAD module.
We can observe brief dips in the target signal which are not nec-
essarily desirable. In real world application one might not want
to switch the focus of visual attention for 200ms. This also il-
lustrates the limitations of the used VAD module to generate the
target labels.

In the bottom row, subfigures d), e), and f), we show cases
where the method is less accurate. In some of the examples
the network emits high probability of speaking even though the
label tells otherwise. In other cases, the activity is somewhere
in between 0 and 1 not reaching the desired decision. We also
present another problem associated with the VAD module. At
the end of the segment in d), the network’s output fitted the tar-
get signal with small advance and delay. This can be attributed
to the way the VAD module generates many speech/non-speech

intervals. Usually, the intervals start before and end after the
actual speech, causing the network to learn to activate the out-
put for a longer period of time than the actual speech act. This
phenomenon is, however, only visible in plot d) among our ex-
amples.

5. Conclusions

In this paper we have proposed and evaluated a method for auto-
matic detection of the active speaker in multiparty interactions
based solely on visual input. Although similar to other methods
proposed in the literature, in our approach we try to reduce the
assumptions about the environment to a minimum. We allow
the different speakers to speak simultaneously as well as to be
all silent. We do not assume a specific number of speakers, and
we estimate the probability of speaking independently for each
speakers, thus allowing the method to be used as is, even if the
number of speakers is changed during the interaction.

Furthermore, we evaluate our system on fairly large dataset
including some challenging examples. For example, around
half of the time the participants interact with a touch surface
and they look down while talking, making the feature extrac-
tion after face detection more difficult.

The method performs fairly well on a speaker dependent
fashion, reaching 78% accuracy on a frame-by-frame evalua-
tion metric. The presented results will serve as a baseline for
comparison with future extensions of the described method.

Future work will include extending to method to obtain
speaker independent results and comparison with audio-visual
approaches proposed in the literature.
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