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Abstract—We develop and evaluate models for automatic
vision-based voice activity detection (VAD) in multiparty human-
human interactions that are aimed at complementing acoustic
VAD methods. We provide evidence that this type of vision-based
VAD models are susceptible to spatial bias in the dataset used for
their development; the physical settings of the interaction, usually
constant throughout data acquisition, determines the distribution
of head poses of the participants. Our results show that when the
head pose distributions are significantly different in the train and
test sets, the performance of the vision-based VAD models drops
significantly. This suggests that previously reported results on
datasets with a fixed physical configuration may overestimate the
generalization capabilities of this type of models. We also propose
a number of possible remedies to the spatial bias, including data
augmentation, input masking and dynamic features, and provide
an in-depth analysis of the visual cues used by the developed
vision-based VAD models.

Index Terms—neural networks, vision, voice activity detection,
dataset bias, spatial bias

I. INTRODUCTION

Natural and effective face-to-face human-human interac-
tions require smooth coordination of the changes in the roles
on the conversational floor (i.e., speaker, addressee, bystander),
known as footing [1], [2]. Since clear conversational roles in
face-to-face communication are vital for smooth and effective
interaction, a machine which is aware of the established
roles in real-time could avoid misunderstandings or talking
over other participants. Therefore, machines need the ability
to perform accurate voice activity detection in conversations
with overlapping speech and multiple parties. Furthermore,
such voice activity detection abilities should minimize any
assumptions for the environment in which the machine will
engage in an interaction. Such assumptions include the level
of noise, number of participants, and spatial configuration
(placement of participants and sensors).

In this paper, we develop and analyze models for voice
activity detection based solely on visual input (i.e., RGB face
data) using state-of-the-art Convolutional Neural Networks.
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Fig. 1. Example of a vision-based voice activity detector. The first and second
images capture negative head rotations around the Y-axis (yaw) w.r.t. the
camera origin, while the third and fourth images represent positive rotations.

Since multiparty face-to-face interactions are situated in space,
we argue that this type of voice activity detectors incorporate
information about the spatial bias captured in the data used
for training the detectors, that is, information about the spatial
configuration or seating arrangement might bias the classi-
fiers. In other words, the performance of the detectors on
data sampled from significantly different spatial distribution
(or seating arrangement) will decrease significantly, thus the
detectors will have poor generalization capabilities. This work
provides evidence for this phenomenon and to the best of
our knowledge is the first to identify this bias and investigate
different mitigation strategies.

The main contributions of this work are:

o We demonstrate that spatial bias (i.e., head pose infor-
mation) related to the physical settings of the interaction
is encoded in the learned representations of certain types
of vision-based voice activity detectors.

« We analyse the effect of data augmentation, input mask-
ing and dynamical inputs on the generalization capabili-
ties of the models with mismatched train and test data.

o We perform in-depth analysis of the features extracted by
the models in order to explain our experimental results.

The rest of the paper is organized as follows. First, in

Section II, we outline previous research on voice activity
detection and publicly available datasets for building vision-
based voice activity detectors. We describe the developed
models in Section III. The experimental setup and evaluation
are given in Section IV and the results of the conducted
experiments are presented in Section V. Discussion on the
limitations and contributions of the developed models is given
in Section VI. We conclude the paper in Section VIIL.
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II. RELATED WORK

In this section, we first discuss existing work on automatic
voice activity detection. We then turn our focus on the few
publicly available datasets suitable for developing vision-based
voice activity detectors.

A. Voice Activity Detection

Voice activity detection (VAD) is the task of determining
if a certain speaker is active at any point in time. If multiple
speakers are present, the more complex task of determining
which speaker is active is called diarization. VAD is important
for many applications and in each area, different constraints
are imposed on the methods. Previous work includes audio-
only, video-only and audio-visual approaches to VAD.

In clean acoustic conditions, and with single speaker in-
puts, the acoustic information is fundamental for the VAD
task, and methods for audio-only VAD have been extensively
studied. Anguera et al. [3] and Tranter and Reynolds [4] offer
comprehensive reviews of the research in this field. Audio-
only VAD systems usually suffer from noisy environments,
far field microphones (as in meeting settings) and by speakers
that overlap in time. Additionally, audio-only approaches are
more limited in multiparty interactions, where it is important to
assign the detection to speakers that might be close physically.

In order to address the shortcomings of audio-only VAD,
many video-only and audio-visual approaches have been pro-
posed in the literature. Video-only methods attempt to directly
model the face [5], [6] or some aspects of the face (e.g., lip
movements [7]) in order to detect the voice activity. The
drawbacks of these types of methods are related to a number
of motions including facial expressions, yawning or chewing
that can be misinterpreted as speaking.

Audio-visual voice activity detection combines information
from both the audio and the video signals. The idea is
that by complementing the audio approach with its video
counterpart, the performance will be generally better because
of increased robustness [8]-[12]. The application of audio-
visual synchronization to speaker detection in broadcast videos
was explored by Nock et al. [13]. Unsupervised audio-visual
detection of the speaker in meetings was proposed in Fried-
land et al. [14]. Zhang et al. [15] presented a boosting-based
multimodal speaker detection algorithm applied to distributed
meetings. Mutual correlations to associate an audio source
with regions in the video signal were demonstrated by Fisher et
al. [16], and Slaney and Covell [17] showed that audio-visual
correlation can be used to find the temporal synchronization
between the audio signal and the speaking face. An elegant
solution was proposed in Hershey and Movellan [18] where
the mutual information between the acoustic and visual signals
is computed by means of a joint multivariate Gaussian process,
with the assumption that only one audio and one video streams
were present and that locating the source corresponds to
finding the pixels in the image that correlate with acoustic
activity.

In more recent studies, researchers have employed artificial
neural network architectures to build voice activity detec-

tors from audio-visual input. A multimodal Long Short-Term
Memory (LSTM) model that learns shared weights between
modalities was proposed in Ren er al. [12]. The model was
applied to speaker naming in TV shows. A combination of
pre-trained Convolutional Neural Network (CNN) model used
for the image encoder and an LSTM model used for the
classifier was presented in Stefanov et al. [19]. Stefanov et
al. [20] further proposed a self-supervised method for vision-
based voice activity detection in the context of language
acquisition. Hu et al. [21] proposed a CNN model that learns
the fusion function of face and audio information. Roth et
al. [22] introduced a new audio-visual dataset for voice activity
detection and Chung [23] proposed a method for active speaker
detection on that dataset.

Other approaches to voice activity detection include a
general pattern recognition framework used by Besson and
Kunt [24] applied to the detection of the speaker in audio-
visual sequences. Visual activity (the amount of movement)
and the focus of visual attention were used as inputs by
Hung and Ba [25] to determine the current speaker on real
meetings. Stefanov et al. [6] used facial action units as inputs
to hidden Markov models to determine the active speaker in
multiparty interactions and Vajaria et al. [26] demonstrated
that information from body movements can improve the de-
tection performance.

B. Publicly Available Datasets

Recently several datasets have been created and made
publicly available in order to build and evaluate audio-visual
voice activity detectors. The AVSpeech dataset [27] is an
automatically collected large-scale dataset consisting of sev-
eral lecture recordings. The recordings capture around 4700
hours of audio-visual data with a single clearly visible face
and the corresponding audio. However, in order to be used
for development and evaluation of vision-based voice activity
detectors, the data needs to be labeled.

The Columbia dataset [11] consists of a recording of a panel
discussion between seven speakers labeled with speaking and
not speaking state. The drawback of this dataset is its small
size that makes it less useful for developing machine learning
models.

The AVA-ActiveSpeaker dataset [22] consists of around 38
hours of audio-visual data. Each of the 3.65 million frames is
manually labeled for speaking and audible, speaking but not
audible, and not speaking state. The drawback of this dataset
is the fact that the data is noisy and in some cases the audio
and video signals are out of sync.

The AMI dataset [28] consists of 100 hours of meeting
recordings. It is manually annotated for many different phe-
nomena, including orthographic transcriptions, hence accurate
voice activity labels could be generated automatically.

In this study we use an in-house dataset containing three-
way interactions collected through three cameras. Further
details on the dataset are given in Section I'V-A.
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III. METHODS

The goal of the methods described in this section is to detect
the speaking state (i.e., speaking or not speaking) of all visible
faces in a multiparty interaction, using only visual information
(i.e., the RGB data).

A. Problem Definition

Given a number of speakers, and a number of sensors
(cameras), vision-based voice activity detection consists of the
task of determining at any point in time, which speakers are
active from the video streams. If each camera only captures
a single speaker, or face tracking is available, this is a binary
classification problem where the input is the part of the image
assigned to each speaker. An example output of a vision-based
voice activity detector is illustrated in Figure 1.

B. Models

We formulate the problem of detecting the state of a face
image (i.e., speaking or not speaking) as a binary classification
task. The models developed in this study consist of a state-
of-the-art Convolutional Neural Network serving as an image
encoder followed by two fully-connected layers that classify
the obtained image representations into one of the two classes.
For learning the representations of the input face images we
use a truncated ResNet-18 [29] as a basis for the encoder
(by removing the classifier from the original model). For
training the models, first, we initialize the truncated ResNet-18
model with the pre-trained weights on ImageNet [30] and then
simultaneously fine-tune the encoder and train the classifier
with our data.

IV. EXPERIMENTS

In this section, we first describe the dataset used to train
and evaluate the voice activity detectors. We then provide the
general setup of the conducted experiments.

A. Dataset

The models are trained and evaluated with a multimodal
multiparty dataset, described in [31]. The spatial configuration
of the recordings is shown in Figure 2. Three participants take
part in each session, where two of the participants interact
with a moderator (the third participant). Each participant was
recorded by a camera positioned in front of him/her. A total
of 15 sessions were recorded, each with a duration of ~30
minutes, resulting in ~7.5 hours of data per recording device.
The moderator is the same for all sessions, whereas the other
participants vary for a total of 24 unique participants. The
interactions occur around a round table and the participants
are seated. The spatial configuration is constant throughout
the data collection. All interactions are in English and all data
streams are spatially and temporally synchronized and aligned.
The dataset is augmented with information about the head
rotation around the Y-axis (yaw) obtained with OpenFace [32].
The polar plots in Figure 2 show the distribution of head
rotations over all recording sessions and for each participant
location, which is relevant for the rest of this study.
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Fig. 2. Spatial configuration of the sensors and participants in the dataset.
Each spoken interaction involves three participants seated at the positions
denoted with PO, P1, and P2. The polar plots show the distribution of head
rotations around the Y-axis (yaw) for each position, estimated over all sessions
in the dataset. Angles are relative to the direction of the corresponding camera.
Positive angles are plotted in blue and negative angles in red.

Here we consider the RGB video stream generated by
the Kinect v2 device pointed at each participant and the
audio stream generated by the participant’s close-talking mi-
crophone. The voice activity labels are obtained by manual
annotations of the audio streams.

B. Setup

The experiments are designed to test the models in the spa-
tial position PO that corresponds to the moderator of the spoken
interactions, see Figure 2. This provides the opportunity to
produce well trained speaker-dependent models and test the
models in details. The total number of frames used in the
experiments is 411,356 for a total duration of analyzed video
data of approximately 4 hours at 30 frames per second.

In the experiments we keep the model architecture constant
and vary the inputs with which each model is trained and
tested, in order to give insights into the model’s capabilities
and limitations.

The first two variables in the experiments, zoom level and
input kind are illustrated in Figure 3 and determine the visual
representation given as input to the models. The zoom level is
obtained by masking potentially irrelevant information from
the original images and results in four alternative represen-
tations: FRAMES, ALIGNS, FACES, and LIPS (columns in
the figure). The input kind is static when we use the original
images (first row in the figure), or dynamic as in the second
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FRAMES ALIGNS FACES LIPS

Fig. 3. Different types of input data considered in this study. The first row
illustrates the static inputs and the second row the dynamic inputs. Different
columns show different levels of zoom (or masking): starting from left, these
are denoted in the paper by FRAMES, ALIGNS, FACES, and LIPS.

row. The dynamic inputs are generated using dynamic image
networks [33] to summarize a sequence of frames into one
image. We slide a fixed window (6 frames, ~200ms) with a
hop of one frame over the static inputs. This results in the
same amount of input data in both the static and dynamic
cases.

Another variable used in our experiments is the partitioning
of the train and test data introduced with the aim to generate
mismatch between the train and test data with respect to head
rotations. We split the train and test data into POS and NEG
partitions depending on the positive or negative sign of the
head rotation angles (see Figure 2 for an illustration). The full
train and test sets are referred to with FULL in the text and
figures.

Finally, in an attempt to mitigate the effects of mismatch
between train and test data, we perform a simple procedure
for data augmentation where we create a new train set from a
POS or NEG partition by flipping all the images horizontally.
This training is referred to in the following as AUGMENTED
whereas the original partitions are labeled ORIGINAL.

For each experiment, we use a 10-fold cross-validation
procedure to randomly (but preserving the underlying distri-
bution of head rotations) split the data into three parts: train,
validation, and test data. The proportions of the three partitions
are respectively ~80%, ~5%, and ~15%. For training the
models we used Adam [34] optimizer with default parameters
(o =0.001, B; = 0.9, B> = 0.999, and € = 10~8) and cross-
entropy loss function. Each model is trained for 25 epochs
when using the original dataset and 50 epochs in case of
the augmented dataset (it is exactly two times larger than
the original dataset). The models corresponding to the best
validation performance are selected for evaluation on the test
set. All models are implemented in PyTorch [35].

Each model outputs a posterior probability over the two
possible outcomes (i.e., speaking or not speaking). Since the
goal is a binary classification, the detection of the positive
voice activity happens when the corresponding probability
exceeds 0.5. The evaluation of each model is performed by
computing the F1 score on a frame-by-frame basis.

V. RESULTS

In this section we report the experimental results. We first
discuss the results obtained by training the models on the
full train set. In Figure 4 the F1 scores obtained over 10-
fold cross-validation are presented with box plots in different
experimental conditions. The left plot shows models trained
with static inputs, whereas the right plot with dynamic inputs.
The X-axis shows the level of details in the input images, from
the broader FRAMES to the more detailed LIPS (see Figure 3
for a visual representation). Finally, the different test sets are
color coded and correspond to the full test set (FULL) and the
partitions of the test set containing negative (NEG) or positive
(POS) head rotations.

From the figure we can make a number of general obser-
vations: i) results with dynamic inputs are in general worse
than those with static inputs, ii) focusing on more details
of the face or the lips has a negative impact on the results
compared to using the full images, iii) results are very stable
across repetitions (concentrated around the median), iv) for the
static inputs results do not change if we restrict the test set to
only negative or positive rotations. However, for the dynamic
inputs, the negative rotations consistently obtain slightly better
results, and v) results with FRAMES and ALINGS static
inputs have the highest performance and approach 98% F1
scores.

In order to verify if this very high performance might be
affected by the spatial bias in the dataset as discussed in
Section I, we present results obtained by splitting the train
set as well as the test set into negative and positive angles of
rotations. Figure 5 shows the F1 score when the train and test
sets are either matched (both subsets with negative or both with
positive angles) or mismatched. Again, all results are presented
with box plots over 10-fold cross-validation. The left and right
plots refer to static and dynamic inputs respectively. The X-
axis corresponds to the level of zoom in the inputs. Finally
the color code corresponds to the train and test set selection.
In the ORIGINAL condition, either only examples of negative
rotations or positive rotations are included in the train set.
In the AUGMENTED condition the same train sets of the
ORIGINAL conditions are augmented by flipping the images
horizontally. In the matched conditions, both the train and test
set contain examples with the same direction of rotation. In
the mismatched condition the rotations in the test set are in
the opposite direction of those in the train set.

The matched conditions present a similar pattern seen in
Figure 4, in spite of the fact that the amount of train data is
around half in the ORIGINAL case. However, there is a consis-
tent and considerable drop in performance (up to 20 percentage
points) when the test set is mismatched with the train set.
Data augmentation consistently improves the situation in most
conditions. However, it comes short of solving the problem.
Surprisingly, this drop in performance is observed even when
concentrating on details of the face (ALIGNS, FACES and
LIPS conditions). Using dynamic inputs does not improve the
situation as performance is lower in general.
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Fig. 4. Box plots of the F1 score over 10-fold cross-validation as a function of zoom level (FRAMES, ALIGNS, FACES, LIPS) and test set (FULL, POS,
NEG). The models are trained on the full train set with static (left) or dynamic inputs (right).

In the case of ORIGINAL static inputs we also report in
Figure 6 a detailed version of the results where we have
split the matched and mismatched conditions into the four
combinations of train and test partitions. The figure shows
that training on positive or negative angles has little influence
and the main factor is if the test set is matched or mismatched
to the train data.

VI. DISCUSSION

The results in Figure 4 on the full train and test set with the
full image input (FRAMES) may suggest that the models learn
the visual voice activity detection task with very high level
of performance and generalize well between the train and test
set. However, this global evaluation turns out to be misleading
as one digs further into the details. The results shown in
Figure 5 for mismatched train and test sets demonstrate how
it is sufficient to change the head rotation angle to confuse
the models if those angles were not observed during training.
This suggests that spatial bias (i.e., head pose information)
related to the physical settings of the recordings is encoded
into the learned representations of this type of vision-based
voice activity detectors. These representations fail to distill
the information that is relevant to the VAD task, disregarding
other aspects of the input images even in spite of the fact that
all other variables (illumination, subject, experimental setting),
are constant during our experiments.

We proposed a number of approaches to mitigate this
problem showing that this is a hard problem to solve.

Data augmentation by flipping the images horizontally has
a positive influence. However, the improvements in perfor-
mance are limited, and may be overestimated because of the
symmetry of the head rotation distribution for position PO as
illustrated in Figure 2. This means that flipping the images
creates a distribution of head poses that is similar to that of the
full train set. The aspect of the flipped face may still be very
different from the original rotated face because of asymmetries
in the human face.

Another attempt is to mask parts of the image that should
not be involved in the task (ALIGNS, FACES and LIPS
conditions). The results presented in Figure 5 demonstrate
that this is counter-productive, and suggest that the model
might be using information from the input images outside the
area of the speaker’s face. In order to verify this, we have
created saliency maps showing the areas of the image that
the model deems more salient to solve the task. Figure 7
shows an example sequence using FRAMES inputs where
the speaker is inactive in the first row and active in the
second. As expected, the model uses information from the
whole picture (including the background and torso of the
speaker) and not only the face. This is probably due to the fact
that speaker movements are correlated with voice activity and
provide useful information for the task. Explaining why pixels
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Fig. 5. Box plots of the F1 score over 10-fold cross-validation with matched and mismatched train and test sets. The left plot shows results obtained with
static video frames as input to the models, on the right dynamic frames are used. In each plot, the X-axis shows the zoom levels (FRAMES, ALIGNS, FACES,
LIPS). The color codes distinguish data kinds. The ORIGINAL data contains examples with either only negative or positive yaw angles both in the train and
test set. The AUGMENTED data contains those examples and the ones obtained by flipping the images horizontally. Matched results have the same direction
of head rotation in the train and test set, mismatched results have opposite rotations.
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Fig. 6. Box plots of the F1 score over 10-fold cross-validation of the detailed
results for ORIGINAL static inputs. All four combinations of train and test
partitions are shown. NEG/NEG and POS/POS correspond to the matched
condition in Figure 5, whereas NEG/POS and POS/NEG correspond to the
mismatched condition.

from the background are also salient is more difficult. One
hypothesis is that the speaker movements cause the camera
to adjust exposure parameters which creates visual artifacts in
the background that are correlated with those movements.

Finally the use of dynamic inputs did not improve the
results. One hypothesis is that the algorithm removes important
information contained in the static inputs as illustrated in
Figure 3. A possible solution would be to stack the static
and dynamic inputs into a larger input vector, but this has
not been tried so far. We also suspect that there might be
artifacts introduced by the algorithm that extracts such images
over a number of consecutive frames. However, a conclusive
explanation would require a more in-depth analysis.

Since data collection, similar to what we used in this study,
is a costly process and requires the use of human resources,
data augmentation methods are logical directions in future
work. Given the form of the problem we face in this study,
in addition to the aforementioned methods, we intend to use
homography [39] (or projective transformation) techniques
i) for the purpose of data augmentation and ii) to increase
the performance of the vision-based voice activity detectors.
An example of a homography technique applied to images
extracted from the dataset is shown in Figure 8.
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Fig. 7. Saliency maps for a sequence of static FRAMES inputs. The white circle indicates an active speaker. The images are generated by using the methods
described in [36] and [37]. The implementation is based on [38]. The result shows that the models use information from the whole picture (including the
background and torso of the speaker) and not only the face. This is probably due to the fact that speaker movements are correlated with the voice activity.

XTER
R

TR
R

Fig. 8. Example of estimating a 2D homography (or projective transformation) from a pair of images. The first row illustrates the static input frames to the
2D homography method. The second row illustrates the rotated and reconstructed versions of the images in the first row using a 2D homography technique.
Similar techniques could be used for the purpose of data augmentation in order to increase the performance of vision-based voice activity detection methods.

In order to provide further support for the negative effects of
dataset spatial bias on this type of vision-based voice activity
detection methods, we intend to perform similar analysis
on the rest of the participants present in the used dataset,
also minimizing the possible effects that the appearance and
behavior of a specific person might have on the models
(account for person-specific bias).

Additionally it would be interesting to see to what extent
similar spatial bias might impact other datasets and methods
for video-only and audio-visual voice activity detection pro-
posed in the literature.

VII. CONCLUSIONS

Voice activity detection is a fundamental prerequisite for
any machine-based conversational system. Automatic vision-
based VAD (based on visual information from the face) in
multiparty human-human interactions could complement an
acoustic VAD method, thus improving the system robustness in
noisy conditions and allowing it to detect an arbitrary number
of possibly overlapping active speakers.

In this paper we analyse the problem of spatial bias in
vision-based voice activity detection for multiparty spoken
interactions. The head pose distribution is an inherent bias in
multiparty interaction data, due to the fixed seating arrange-
ment and camera placement. We claim that the performance

evaluations observed in our results, as well as those reported
in the literature on similar datasets, may be boosted by the
similarity of the distribution of the head pose in the train
and test sets. By artificially creating a mismatch between
the head pose distribution in the train and test data, we
show how the performance of a vision-based voice activity
detector can be drastically reduced. Although splitting the
data between positive and negative head rotations may seem
artificial, the problem of spatial bias in datasets with fixed
seating arrangements should be evident when looking at the
peaked distributions of head rotations in Figure 2.

We propose a number of approaches to mitigate this
problem. Our simple data augmentation method provides a
consistent but limited improvement. We suggest that more
advanced augmentation methods may improve the results even
further.

We also show how masking potentially irrelevant informa-
tion outside the face of the speaker does not improve the
results for this kind of modelling. In order to explain this,
we analyse the model activations in detail. We show that the
models are able to make use of information that is spread in
several regions of the input image, and we provide a possible
interpretation.
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