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Abstract

Nonverbal communication is essential for natural and effective face-to-face
human-human interaction. It is the process of communicating through send-
ing and receiving wordless (mostly visual, but also auditory) signals between
people. Consequently, a natural and effective face-to-face human-machine in-
teraction requires machines (e.g., robots) to understand and produce such
human-like signals. There are many types of nonverbal signals used in this
form of communication including, body postures, hand gestures, facial ex-
pressions, eye movements, touches and uses of space. This thesis investigates
two of these nonverbal signals: hand gestures and eye-gaze. The main goal
of the thesis is to propose computational methods for real-time recognition
and generation of these two signals in order to facilitate natural and effective
human-machine interaction.

The first topic addressed in the thesis is the real-time recognition of hand
gestures and its application to recognition of isolated sign language signs.
Hand gestures can also provide important cues during human-robot interac-
tion, for example, emblems are type of hand gestures with specific meaning
used to substitute spoken words. The thesis has two main contributions with
respect to the recognition of hand gestures: 1) a newly collected dataset of
isolated Swedish Sign Language signs, and 2) a real-time hand gestures recog-
nition method.

The second topic addressed in the thesis is the general problem of real-time
speech activity detection in noisy and dynamic environments and its applica-
tion to socially-aware language acquisition. Speech activity can also provide
important information during human-robot interaction, for example, the cur-
rent active speaker’s hand gestures and eye-gaze direction or head orientation
can play an important role in understanding the state of the interaction. The
thesis has one main contribution with respect to speech activity detection: a
real-time vision-based speech activity detection method.

The third topic addressed in the thesis is the real-time generation of eye-
gaze direction or head orientation and its application to human-robot inter-
action. Eye-gaze direction or head orientation can provide important cues
during human-robot interaction, for example, it can regulate who is allowed
to speak when and coordinate the changes in the roles on the conversational
floor (e.g., speaker, addressee, and bystander). The thesis has two main
contributions with respect to the generation of eye-gaze direction or head ori-
entation: 1) a newly collected dataset of face-to-face interactions, and 2) a
real-time eye-gaze direction or head orientation generation method.






Sammanfattning

Naturlig och effektiv interaktion ménniskor emellan kriaver icke-verbal
kommunikation, dvs sindande och mottagande av ordlésa (ofta visuella) sig-
naler mellan ménniskor. Foljaktligen kraver en naturlig och effektiv interak-
tion mellan ménniskor och maskiner (t.ex. robotar) att d&ven maskinerna kan
forsta och producera sadana ménniskolika signaler. Det finns manga typer av
icke-verbala signaler som anvinds i denna form av kommunikation, inklusi-
ve kroppsstéllningar, handgester, ansiktsuttryck, 6gonrorelser, beréring och
spatiala referenser. Denna avhandling undersoker tva av dessa icke-verbala
signaler: handgester och blickbeteende. Huvudmalet med avhandlingen &r att
foresla berdkningsmetoder for realtidsigenkédnning och generering av dessa tva
signaler for att underlédtta naturlig och effektiv interaktion mellan ménniskor
och maskiner.

Det forsta d&mnet som tas upp i avhandlingen dr realtidsigenkédnning av
handgester och dess tillampning pa igenkdnning av isolerade teckenspraks
tecken. Handgester kan ocksa innehalla viktig information i ménniska-robot
interaktion, till exempel &r emblem typ av handgester med specifik betydel-
se som anvénds for att ersdtta talade ord. Avhandlingen har tva huvudbi-
drag avseende igenkdnning av handgester: 1) en nyinspelat dataset med iso-
lerade svenska teckensprakstecken, och 2) en i realtid fungerande metod for
igenkénning av handgester.

Det andra &mnet som tas upp i avhandlingen &r det allménna problemet
med detektering av talaktivitet i bullriga och dynamiska miljéer utifran vi-
suell information, och dess tillimpning pa tillignande av sprak i ett socialt
sammanhang. Talaktivitet kan ocksa ge viktig information under ménniska-
robot interaktion, till exempel kan den aktuella aktiva talarens handgester
och 6gonrdrelser eller huvudriktning spela en viktig roll for att forsta interak-
tionstillstandet. Avhandlingens huvudbidrag med avseende pa talaktivitets-
detektering: en metod for att detektera talaktivitet fran video i realtids.

Det tredje &mnet som behandlas i avhandlingen &r realtidsgenerering av
blickriktning eller huvudorientering och dess tillampning pa mé#nniska-robot-
interaktion. Ogonblickriktning eller huvudorientering kan ge viktiga signaler
under ménniska-robot-interaktion, till exempel kan den styra vem som ska
prata nér, och koordinera férindringar i rollerna i konversationen. Avhand-
lingen har tva huvudbidrag med avseende pa generering av blickriktning eller
huvudorientering: 1) ett nyinspelat dataset med flerpartsinteraktioner ansikte
mot ansikte, och 2) en metod for att generera blickriktning eller huvudorien-
tering i realtid.
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Thesis Background






Chapter 1

Communicative Nonverbal Signals

This chapter presents a broad introduction to the categories and functions of differ-
ent nonverbal behaviors that can be employed as communicative signals in face-to-
face interactions. The abundance of literature studying the importance of nonver-
bal behavior in face-to-face interaction is the broad motivation for this thesis. The
broad goal of the thesis can be defined as: to propose and develop computational
methods that could enable machines to recognize and generate similar communica-
tive signals.

Nonverbal behavior is a well-studied area of human behavior, with roots leading
back to the 19th century, most notably to “The Expression of Emotions in Man and
Animals” (Darwinl [1873]). In its narrow sense, nonverbal behavior refers to actions
as distinct from speech. It includes facial expressions, hand and arm gestures,
postures, positions, and movements of the body, the legs and the feet. In the broader
sense, nonverbal behavior also includes vocal phenomena, such as fundamental
frequency range and intensity range, speech errors, pauses, speech rate, and speech
duration (Mehrabian, [1972).

Human communication is the process of one person inducing an interpretation
in the mind of another person by means of verbal and/or nonverbal signals. Conse-
quently, nonverbal human communication is the process of one person inducing an
interpretation in the mind of another person by means of nonverbal signals (Rich-
mond et al., [2012). Nonverbal behavior is any of a wide variety of human behaviors
that also have the potential for forming communicative messages. Such nonverbal
behavior becomes nonverbal communication if another person interprets the behav-
ior as a message and attributes meaning to it. We can engage in nonverbal behavior
whether we are alone or someone else is present. We can engage in nonverbal com-
munication only in the presence of one or more people who interpret our behavior
as messages and assign meaning to those messages. Therefore, for human commu-
nication to exist, whether verbal or nonverbal, a source must send a message and a
receiver must receive and interpret that message. Sometimes receivers perceive our
verbal and nonverbal behavior as messages, and sometimes they do not. Table
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presents the four distinct possibilities: the source’s behavior is intended to send/not
send a message and the receiver interprets the behavior either as a message or not.

Source
Message No message
. Message Communication Communication
Receiver . .
No message Behavior Behavior

Table 1.1: Nonverbal Behavior as Opposed to Nonverbal Communication

A communication channel is the sensory route on which a signal travels. Verbal
communication relies mostly on one channel, because spoken language is transmit-
ted through sound and picked up by the ears. Nonverbal communication, on the
other hand, can be taken in by all five senses. Verbal and nonverbal communica-
tion include both vocal and nonvocal signals. Table [I.2] presents the relationship
between verbal /nonverbal communication and vocal/nonvocal signals.

Verbal Nonverbal
Vocal Spoken language  Paralanguage
Nonvocal Sign language Body language

Table 1.2: Verbal Communication as Opposed to Nonverbal Communication

1.1 Categories of Communicative Nonverbal Signals

Numerous categories of nonverbal behavior can be selected from the following
realms (Mehrabian|, (1972),

e Signals: facial expressions, verbalizations, movements, and postures.
e Referents: feelings and attitudes.
e Attributes: personality, age, gender, and status.

e Media: face-to-face, telephone, and video.

Books on the topic of nonverbal behavior, (Knapp et al., 2013, Moore et al.,
2013), mostly agree on the different categories of nonverbal behaviors including,
body movements and gestures, managing space and territory, touch, tone of voice,
and appearance. Similar categorization is used in this text and is presented next,
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e Appearance: Appearance involves physical characteristics and artifacts.
There are many aspects of physical appearance that can potentially produce
messages including, attractiveness, body size, body shape, facial features,
hair, skin color, height, weight, clothing, watches, and necklaces.

e Gestures and movement: This type of behavior is often called body lan-
guage (Table . The study of the communicative aspects of all gestures,
eye behaviors, facial expressions, posture, and movements of the hands, arms,
body, head, legs, feet, and fingers is called kinesics (Birdwhistell, [1970)).

e Face and eyes: We also communicate through eye behaviors, primarily eye
contact and face behaviors, primarily facial expressions. While face and eye
behaviors are often studied under the category of kinesics, communicative
aspects of eye behaviors have their own branch of studies called oculesics.

e Voice: Paralanguage refers to the vocalized but nonverbal part of the com-
munication (Table [[.2). The study of the communicative aspects of voice
including, pitch, volume, rate, vocal quality, and verbal fillers is called vocal-
ics (Andersen, 1999).

e Space: The study of the communicative aspects of space and distance is
called prozemics. Proxemic distances can be grouped into several categories
including, public, social, personal, and intimate distance (Hall, |[1990). The
concept of territoriality groups space into several categories including, pri-
mary, secondary, and public space (Hargiel 2011)).

e Touch: The study of the communicative aspects of touch is called haptics.
Touch is important for human social development, and it can be grouped into
several categories including, welcoming, threatening, and persuasive touch.

e Environment: Environmental factors include architecture, interior spatial
arrangements, music, color, lighting, temperature, scent, and smell. The
study of the communicative aspects of scent and smell is called olfactics.

e Time: The study of the communicative aspects of time is called chronemics.
Time can be grouped into several categories including, biological, personal,
physical, and cultural time (Andersen, {1999).

1.2 Functions of Communicative Nonverbal Signals

Nonverbal signals play six major functions in relation to the verbal signal. These
functions are presented next,

e Complementing: Some nonverbal signals add to, reinforce, clarify, and
elaborate the intended meaning of the verbal. For example, a shaking fist
reinforces an accompanying threatening utterance.



e Contradicting: Some nonverbal signals contradict, dispute, and are in con-
flict with the verbal. For example, sarcasm is used to make a point by utilizing
nonverbal signals which contradict the verbal signal.

e Accenting: Some nonverbal signals accent, enhance, emphasize, and high-
light the verbal. For example, pausing before speaking or speaking louder
than usual, highlights the verbal signal.

e Repeating: Some nonverbal signals repeat, reiterate, and restate the verbal.
For example, emblems (Section [2.1)) are gestures that can be used to repeat
the verbal signal.

e Regulating: Some nonverbal signals regulate the verbal. For example, look-
ing at or away from the other person is one way to regulate who is allowed to
speak when.

e Substituting: Some nonverbal signals substitute the verbal. For example,
emblems (Section [2.1)) are gestures that can be used to substitute for the
verbal signal.

1.3 Summary

In summary, often nonverbal behavior cannot be translated into definitions because
meanings are in people’s minds, not nonverbal behaviors (Table . The meaning
attributed to nonverbal behaviors is influenced by the context in which these be-
haviors occur. Besides the context, culture, ethnic and geographic origins, gender,
social status, and educational background, all contribute to the meaning attributed
to these signals. Furthermore, although single nonverbal behaviors can stimulate
meanings, more typically a meaning is composed of groups of nonverbal behaviors
that interact to create communicative impact; to understand all of these behaviors,
it seems necessary to look at the individual categories of behaviors one by one.

This chapter presented a broad introduction to the categories and functions
of different nonverbal behaviors that can be employed as communicative signals
in face-to-face interactions. The importance of nonverbal behavior in face-to-face
interaction is the broad motivation for the work described in this thesis. The broad
goal of the thesis can be defined as: to propose and develop computational methods
that could enable machines to recognize and generate similar communicative signals.
The chapter discussed the requirements for nonverbal communication to exist and
grouped different nonverbal signals into categories. The chapter also discussed the
major functions nonverbal signals play in relation to the verbal signal. Evidently,
the domain of human nonverbal behavior is wide and complex. Therefore, the
next chapter is dedicated to narrowing down the scope of the thesis to two distinct
communicative nonverbal signals: hand gestures and eye-gaze.



Chapter 2

Scope and Delimitations

This chapter narrows down the scope of the thesis to two distinct communicative
nonverbal signals: hand gestures and eye-gaze, and places the recognition and gen-
eration of certain categories of these two signals in the context of human-machine
interaction. The multitude of functions these two signals serve in face-to-face in-
teraction is the narrowed down motivation for this thesis. The narrowed down goal
of the thesis can be defined as: to propose and develop computational methods
that could enable machines to recognize communicative hand gesture signals and
generate communicative eye-gaze signals.

On one hand, the computational methods developed in this thesis can be clas-
sified as Social signal processing (SSP) (Pantic et al} [2011} [Vinciarelli et al., 2009).
SSP defines several challenges for machine analysis of social signals including, the
recording of the scene, detection of the people in the scene, extraction of multi-
modal signals, and multimodal signal analysis and classification in a given context.
On the other hand, the computational methods developed in this thesis have di-
rect application in Human-robot interaction (HRI). Robots displaying human-like
behaviors are expected to take an increasing role in society, for example, by taking
care of elderly (Feil-Seifer and Mataric), 2005 Tapus et al.l [2007) or helping chil-
dren in their learning (Castellano et all |2013)). To support natural and effective
social interaction, robots should be able to recognize and generate all categories of
communicative nonverbal signals discussed in Section As a result, nonverbal
behavior has been an active area of research in the field of HRI, with work mostly
concentrated around kinesics, and additional emphasis within kinesics on eye-gaze,
hand gestures, and facial expressions (Thomaz et al., [2016).

2.1 Communicative Hand Gesture Signals
Several categorizations of hand gestures have been proposed in the literature. One

of the most adopted, (McNeilll 1992, [2005), categorizes hand gestures into four
groups. These categories are presented next,
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e Deictic: This type of gestures are related to words, including pointing ges-
tures used for direct spatial or abstract reference. For example, talking about
someone across the room and pointing them out.

e Iconic: This type of gestures are related to an event or an object. For
example, using the hands to describe a high mountain or a wide river.

e Metaphorical: This type of gestures are related to abstract concepts. For
example, using the fingers to create a heart-like shape and place it on the
chest.

e Beat: This type of gestures are related to the “music” of the utterance. For
example, up-and-down hand movements that coincide with spoken clauses.

Hand gestures can be placed along a continuum where their co-occurrence with
speech is more and more optional (Kendon, [1980). Moving along the continuum,
gestures become increasingly language-like and may take over more of the commu-
nicative functions of speech. On one side of the continuum are co-speech gestures,
which are unconsciously produced in conjunction with speech. On the other side
of the continuum are sign languages, which are full languages with their own mor-
phology, phonology, and syntax (Stokoe) [1980). This continuum is presented next,

e Gesticulations: This type of gestures are co-occurring with speech.

Speech-framed: This type of gestures are filling in a slot in speech.

Emblems: This type of gestures can replace words.

Pantomimes: This type of gestures are produced without speech.

Sign languages: Sign languages have lexical words and full grammars.

2.1.1 Categories of Hand Gesture Signals

There are five major categories of kinesics (Ekman, 1976, [Ekman and Friesen,
19694alb, |1972, 1974). Similar categorization is used in this text and is presented
next,

e Emblems: This type gestures and movements are often referred to as speech-
independent. Besides having direct verbal translations and usually being
used intentionally, emblems are socially learned in much the same manner
as language. The meanings assigned to emblems are arbitrary, and the way
meanings are associated with actions is highly similar to the way meanings are
associated with words. Emblems are different from the signs used by the deaf
people who communicate using sign languages; even though emblems have a
generally agreed-on meaning, they are not part of a formal sign system like
a sign language (Andersen, [1999). The primary function of emblems is to

8



substitute spoken words; they can be used to induce specific meanings in the
minds of others in place of the verbal signal.

INlustrators: This type of gestures are often referred to as speech-linked. Like
emblems, illustrators are usually intentional. Unlike emblems, illustrators
cannot stand alone and induce meaning; illustrators generate little or no
meaning when they are not accompanying speech (Andersenl [1999). The
primary function of illustrators is to clarify or complement the verbal signal.
Illustrators are a large group of nonverbal behaviors, which can be further
divided into three categories,

— Gestures that are related to the speech referent or explanation. For
example, using the hands to describe a high mountain or a wide river.

— Gestures that highlight or emphasize an utterance. For example, rising
a different finger to highlight different points in an argument.

— Gestures that help the speaker in organizing the conversation. For ex-
ample, hand movements that punctuate the speech.

Regulators: This type of gestures and body movements, along with eye and
vocal signals, maintain and regulate the back-and-forth interaction between
speakers and listeners during spoken dialogue. Regulators are not as inten-
tional as emblems and illustrators. The primary function of regulators is to
manage the communication turn-taking. Regulators can be divided into four
categories (Duncanl 1972, [1974),

Turn-yielding regulators are used by speakers who wish to discontinue
talking and give the listener the opportunity to take the speaking role.

— Turn-maintaining regulators are used by speakers who want to continue
talking.

— Turn-requesting regulators are used by listeners to signal the speaker
that they want to talk.

Turn-denying regulators are used by listeners to signal that they decline
the turn to talk.

Affect displays: This type of gestures primary involve facial expressions
but also include a person’s posture, the way a person walks, limb movements,
and other behaviors that provide information about the emotional state and
mood. The primary function of affect displays is to reveal the emotional state
and these signals are usually unintentional.

Adaptors: This type of gestures result from uneasiness, anxiety, or a general
sense that one is not in control (Andersen, [1999). Adaptors are falling into
three categories,



— Self-adaptors are acts in which an individual manipulates ones own body.
For example, scratching and hair twisting.

— Alter-adaptors are acts in which an individual protects from others. For
example, folding the arms and placing them on the chest.

— Object-focused adaptors are acts in which an individual manipulates an
object. For example, tapping a pen or twisting a ring around the finger.

2.1.2 Computational Modeling of Hand Gesture Signals

Many studies investigate aspects of robots using pointing gestures to communicate
with humans. These are shown to increase people’s information recall (Huang and
Mutlul as well as task performance and perceived workload (Lohse et al.
@D. Eye-gaze is shown to significantly assist the recognition of pointing ges-
tures (Héring et al.| 2012, Tio et al., [2010)). Liu et al. (2013) presented a study that
shows that people do not usually point to refer to a person, but instead use eye-
gaze. [Sauppé and Mutlul (2014)) compared several variations deictic gestures on a
small humanoid robot including, pointing, presenting, touching, and sweeping, and
found that their effectiveness is strongly related to the context.
(2008) presented a system for a museum robot that moves its head at significant
points of an explanation, such as at transition points, together with deictic words,
in response to a question, upon keywords, or with unfamiliar words.

Some studies investigate the recognition of pointing gestures. In (Brooks and,
the authors presented a framework for recognition of deictic gestures
of a human. [Van den Bergh et al| (2011) presented a real-time pointing detection
system for a robot giving directions. Similarly, |Quintero et al| (2013]), achieved
pointing recognition for object selection. Burger et al.| (2012) used computational
models to recognize gestures for robot commands.

This thesis contributes to the literature on SSP and computational HRI with
computational methods for recognition of communicative hand gesture signals.
More specifically, one of the outcomes of the thesis is a newly collected dataset
of isolated Swedish Sign Language signs. Another outcome is an investigation of
computational methods for recognition of hand gestures and the development of a
real-time hand gesture recognition method. The method is applied and evaluated
on the task of recognizing isolated sign language signs which fall under the category
of emblems.

2.2 Communicative Eye-Gaze Signals

There are three main categories of communicative eye-gaze signals: mutual gaze,
one-side look, and gaze aversion (Argyle and Cook, [1976], |Argyle and Deanl [1965]
|Argyle and Inghaml 1972 |Argyle et al.l 1973). Mutual gaze refers to two people
looking in the direction of one another’s face. Staring occurs when one person
focuses in on another person and gives a long and often invasive look, which in some
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cultures, is considered unacceptable and rude (Argyle and Inghaml, [1972). One-side
look refers to gaze of one individual in the direction of another person’s face, but
the gaze is not reciprocated. Gaze aversion can signal that one is not interested in
what the other person has to say or is used as a regulator when wishing to stop the
communication. Gaze aversion is also a natural part of an ongoing conversation
to avoid staring at the other person and it is increased by speakers who are using
turn-maintaining signals; speakers who want to continue talking often signal their
intention by dramatically reducing their gaze toward the listener.

2.2.1 Functions of Eye-Gaze Signals

Eye-gaze signals serve four primary functions (Kendon, 1967). These functions are
presented next,

e Scanning: The eyes scan, focus, and collect information about the world.
Humans use scanning to monitor the environment and to protect from harm.

e Establishing and defining relationships: Eye contact is often the first
stage in the initial encounter phase of a relationship. When a person catches
the eye of another person, and if the receiver looks at the source, a relationship
begins. If the receiver looks away from the source, a relationship is not started.
Eye contact can decrease the physical distance between people and can be
used to close others out of a conversation.

o Expressing emotions: While many areas of the face can be controlled, the
eye area is one of the least controllable. As a result, the eyes and the area
surrounding them reveals more accurate information about the emotional
state than other areas of the face.

e Controlling and regulating the interaction: Bavelas et al|(2002) found
that there is what they call a “gaze window” in a conversation. They sug-
gested that speakers have minor breaks in their narratives to allow for short
responses. At those points, there is a mutual gaze. This short gaze is then
used by listeners to respond with “mmhm” or a nod to indicate microlevel
understanding and/or agreement.

2.2.2 Computational Modeling of Eye-Gaze Signals

Eye-gaze can be used by robots to manage the conversational floor. For example,
looking away can signal cognitive effort. Based on this insight,|Andrist et al.[(2014),
presented a three-function gaze control system to control a robot. The robot uses
face-tracking to engage in mutual gaze, idle head motion to increase lifelikeness,
and purposeful gaze aversions to achieve regulatory conversational functions. In
contrast, to achieve more natural and engaging gaze behavior, [Sorostinean et al.
(2014)), presented a social attention system that tracks a person but attends to
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strong motion when detected in its visual field. In order to generate a realistic
robotic eye-gaze behavior, [Kuno et al.| (2006]), analyzed human head orientation
data in a museum setting. Based on this, they presented a system for a guide
robot; the robot alternates gaze between exhibition items and human audiences
while explaining the exhibits.

Joint attention can be useful during robot-to-human object handover. |Grigore
et al.| (2013)) studied a handover task where they compared a model based on only
physical features of the action versus one that uses information about the human’s
engagement in an interaction: eye-gaze and head orientation as a sign of a human’s
focus of attention and engagement. |Admoni et al. (2014) found that gaze signals
influence people’s compliance with the direction indicated by the gaze in ambiguous
handover situations. Moon et al.|(2014) showed that people reach for an offered ob-
ject earlier when a robot signals via eye-gaze to the handover target location. Huang
and Thomagz| (2011) outlined a three-part model of joint attention capabilities for
social robots: responding to joint attention, initiating joint attention, and ensuring
joint attention.

Studies show humans to be influenced in a variety of ways by the robot’s
gaze. Staudte and Crocker| (2009) demonstrated that a human’s own gaze behavior
and understanding of the robot’s speech content is modulated by the coordination
of that robot’s speech and gaze. |Admoni et al.|(2013) found that people are more
accurate at recognizing shorter, more frequent fixations than longer, less frequent
ones. In a collaborative task, people are also found to take spatial and contextual
cues from brief robotic glances (Mutlu et al.l |2009). A humanoid robot’s gaze has a
positive impact on trust for difficult human decisions, (Stanton and Stevens), [2014)),
and robots are found to be more persuasive when they use gaze (Ham et al., [2015)).

This thesis contributes to the literature on SSP and computational HRI with
computational methods for analysis and generation of communicative eye-gaze sig-
nals in multiparty interactions. More specifically, one of the outcomes of the thesis
is a newly collected multimodal dataset of multiparty face-to-face interactions. An-
other outcome is an investigation of computational methods for analysis and gener-
ation of eye-gaze direction or head orientation and the development of a real-time
method for generation of candidate gaze targets.

2.3 Summary

In summary, most of the computational HRI research is concerned with recogniz-
ing pointing gestures and with generating regulators. While there is a considerable
amount of research on the importance and effects of eye-gaze, there is little com-
putational research on the production of appropriate gaze behaviors.

This chapter presented an overview of different categories of communicative
hand gesture signals and communicative eye-gaze signals. The chapter also pre-
sented the functions these signals serve in face-to-face interaction. The multitude
of functions these two signals serve in face-to-face interaction is the motivation
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for this thesis. The goal of the thesis is defined as: to propose and develop com-
putational methods that could enable machines to recognize communicative hand
gesture signals and generate communicative eye-gaze signals. The next chapter is
dedicated to the description of the research methodology employed in this work
and concludes the first part of the thesis. The second part of the thesis is dedicated
to outlining the contributions of the included publications. Each chapter in the
second part follows the same structure: 1) a background section which includes the
specific motivation and context of the study, and 2) a contributions section which
includes discussion on the contributions and results of the study.
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Chapter 3

Research Methodology

This chapter presents the main steps taken during the research described in the
thesis. This research follows a data-driven approach that can be roughly divided
into three main steps: data collection, signal modeling, and model evaluation.

3.1 Dataset Collection

A prerequisite for developing data-driven computational models of a certain com-
municative signal is a dataset that captures the signal in a given context. There are
two alternatives for acquiring representative data; either to use a readily available
dataset or to collect one. Using a prerecorded dataset is an appealing alternative
since this considerably shortens the time needed to develop and test different meth-
ods. However, datasets are usually recorded for the purpose of investigating certain
phenomena. Consequently, finding a dataset that addresses the specific needs of a
novel study is difficult or such dataset might not exist. Therefore, the research in
this thesis also includes the collection of datasets designed with a particular study
in mind; the datasets capture the behavioral signal under consideration in a cer-
tain context. The following list describes some of the desired characteristics of the
considered and collected datasets,

e Multimodal: The datasets are rich in perceptual signals. For example, the
collected datasets include in one case (Paper A), streams of color, depth
and body signals, and in another (Paper E), streams of audio, color, depth,
infrared, body, face, eyes, touch and robot signals.

e Multiparty: The datasets involve interactions of more than two participants
at a time (Paper E).

e Multiuser: The datasets involve recordings of many different participants.
For example, the collected datasets include in one case (Paper A), 17 differ-
ent participants, and in another (Paper E), 24 different participants.

15



e Spontaneous: The datasets include non-scripted interactions and natural
behaviors (Paper E).

e Dynamic: The datasets are rich in conversational dynamics. For exam-
ple, one of the collected datasets (Paper E) includes three types of inter-
actions: 1) human-human-robot task-based interactions, 2) human-human-
human task-based interactions, and 3) human-human-human open-world di-
alogues.

e Automated: The datasets take into consideration easy data post-processing
(Paper A and Paper E). For example, during the data collection, signals
and methods are used to ensure automated temporal and spatial alignment
of the collected data streams.

e Large: The datasets capture representative data of many users and interac-
tions (Paper A and Paper E).

3.2 Signal Modeling

The methods used for behavioral signal modeling are established methods from
the field of Machine learning (Bishop), [2006, Mitchell, [1997). The research in this
thesis relies on problem-specific modifications of different supervised, unsupervised,
probabilistic (Murphyl, [2012) and deep learning methods (Goodfellow et al., |2016]).
Some of the work also investigates application of transfer learning. The developed
methods are either used for recognition/estimation of a communicative signal or for
generation/synthesis of a communicative signal. It is important to outline the main
difference between recognition and generation. While the main goal of recognition
is to achieve average high performance for as many as possible subjects, the main
goal of generation is to achieve average high performance for one subject.
Supervised machine learning methods rely on data labeling/annotation in order
to perform some sort of optimization that “learns” a function which maps the input
(data representations/features) to the output (target classes/labels). When using
large datasets as the ones used in this work, manual data labeling is time consuming
and erroneous process. Furthermore, manual data labeling is a subjective process
and usually requires several annotators in order to minimize this subjective bias.
These observations are the main motivation to use semi-automated data labeling
techniques. This means that the labels are usually generated by an automated
procedure and then they are manually inspected and corrected when necessary.
The main goal of the thesis is to propose and develop methods that can be used
in real-time and real-world human-machine interactions. This puts some limitations
on the type of assumptions that can be made for the environment in which the
machine (e.g., robot) will engage in interactions. The following list outlines some
of the desired characteristics of the proposed methods. The proposed methods
are designed in a way so most of the desired characteristics are met. However,

16



there are certain limitations and assumptions which are discussed in the included
publications,

e Real-time: The proposed methods should be able to operate in real-time
(Paper B, Paper C, Paper D, and Paper F). For example, the methods
should not use future information for the perceptual signals. This means
that the methods should predict/estimate the target signal based only on the
history of the perceptual signals.

e Non-intrusive: The proposed methods should use non-intrusive sensors as
perceptual signal generators (Paper B, Paper C, Paper D, and Paper F).
For example, ideally the goal would be to limit the multi-sensory input to
human-like perceptual abilities (e.g., 2 color cameras or one RGB-D camera
and 2 microphones).

e Automatic: The proposed methods should use data representations which
are automatically generated (Paper B, Paper C, Paper D, and Paper F).
For example, data representations that cannot be automatically generated in
real-time or require manual annotation, should be avoided in order to ensure
the real-time characteristic of the methods.

e General: The proposed methods should extend to unseen subjects. For
example, a method that recognizes/estimates a certain signal produced by
a group of subjects should be able to generalize beyond that group without
significant decrease in performance.

e Robust: The proposed methods should not assume a specific interaction
environment (Paper B, Paper C, Paper D, and Paper F). For example,
assumptions like noise-free environment or known spatial configuration should
be avoided.

3.3 Model Evaluation

Model evaluation involves many steps including, data partitioning, experimental
setup, and choice of an evaluation metric. Data partitioning is an important process
which ensures that the models are trained on a fraction of the dataset (train set)
and tested on unseen data (test set). Furthermore, in order to select the final set of
model parameters, a validation set is reserved for validating and comparing different
model instances. The studies included in the thesis follow the same approach to data
partitioning; all available data is randomly partitioned without replacement, where
~80% of the data is used for training, ~15% is used for testing, and ~5% is used
for validation (Paper C, Paper D, and Paper F). This type of data partitioning
is reasonable when the amount of available data is large. However, this is not
always the case which motivates other approaches to splitting the available data.
One such approach used in this thesis is cross-validation, and more specifically, the
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leave-one-out cross-validation technique (Paper B). For example, let us assume
that the data for a certain hand gesture consists of only 5 examples. The leave-one-
out cross-validation technique builds a model using 4 examples and tests the model
on the 5th left-out example. This process is repeated 5 times (in this example)
where every time a new model is built using different combinations of 4 examples
and tested on the left-out example. The final model performance is reported in
terms of average performance of the 5 different models (in this example).

The experiments conducted in the included studies can be classified as quan-
titative evaluation methods and are generally divided into three groups: subject
dependent, multi-subject dependent, and subject independent. The goal of the
subject dependent experiments is to test the proposed methods on data for only
one subject at a time. This type of experiments is the first indication of the appro-
priateness of the methods for modeling of a certain behavioral signal. The goal of
the multi-subject dependent experiments is to test the proposed methods on data
for several subjects at a time. This type of experiments tests the scalability of the
methods to more than one subject. Finally, the goal of the subject independent
experiments is to test the proposed methods on data for unseen subjects. This type
of experiments tests the transferability of the methods.

Given a model of a behavioral signal and an experimental setup, evaluation is
generally reported in terms of accuracy (classification) and error (regression). In
the broad sense, the model’s accuracy in a classification task, is the amount of cor-
rectly predicted classes/labels as a fraction of the target classes/labels (Paper B,
Paper C and Paper F). Specifically, counting the number of true positives (tp),
false positives (fp), true negatives (tn), and false negatives (fp), the accuracy is
calculated,

_ tp + tn
tp+tn+fp+f

ACC (3.1)

Accuracy can be an unreliable metric when the dataset is unbalanced (the num-
ber of observations in different classes vary greatly). The baseline chance perfor-
mance using this metric can vary greatly in these cases. This observation motivated
the use of weighted accuracy in one of the studies where the dataset is unbalanced
(Paper D). As a consequence, regardless of the actual class distribution in the
dataset, the baseline chance performance using weighted accuracy was always 50%.
In that study, for a two-class classification task, the weighted accuracy is calculated,

tp + tn

WACC = tptfn ~ fpttn (3.2)

2
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In the broad sense, the model’s error in a regression task, is the magnitude of
error the model commits when estimating some continuous target value. The study
described in Paper F uses mean absolute error for model evaluation. Denoting the
number of samples with n, the estimated value with ¢ and the target value with y,
the model’s mean absolute error is calculated,

1 n .
MAE = n Z lyi — il (33)
i=1
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Chapter 4

Hand Gesture Recognition

This chapter presents a study on the first topic addressed in the thesis: the real-
time recognition of hand gestures and its application to recognition of isolated sign
language signs. Hand gestures can also provide important cues during human-robot
interaction, for example, emblems are type of hand gestures with specific meaning
used as substitutes of words (Section [2.1]).

4.1 Background

There has been a substantial research effort to develop assistive technology for
deaf people. This group of people is at a disadvantage when it comes to com-
municating with society or access to information, such as in education and social
services (Efthimiou and Fotinea) 2007, |Steinberg et al.l 1998). Outside the deaf
community, there are groups of people who use signing complementary to speech in
order to enhance communication. This group includes people with various disabil-
ities such as developmental disorder, language disorder, cerebral palsy and autism.
Within this group, key word signing, is a well established method of augmented
and alternative communication. Key word signing borrows individual signs from
a sign language to support and enhance the verbal signal (Windsor and Fristoe,
1991). Furthermore, key word signing discards the grammatical constructs in the
sign language. Therefore, this type of communication support can be seen as com-
munication based on emblematic gestures (Section [2.1]).

While many deaf children have sign language as their first language and are
able to acquire it in a natural way from the environment, children that need signs
for other reasons do not have the same opportunities to be introduced to signs and
signing. This observation motivates the development of a learning environment
where children can learn signs in a game-like setting. During the game-play an
avatar can present different signs and give the child certain tasks to accomplish,
and by doing so the child practices signing. The learning environment is thus
required to interpret the signs produced by the child.
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4.1.1 Related Work

The study described in this chapter presents a hand gesture recognition method that
models and recognizes manual components (hand shape/orientation and movement
trajectories) of isolated sign language signs. A comprehensive review of the research
on sign language recognition (SLR) and the main challenges is provided in
2011)), while[Mitra and Acharya| (2007) and [Rautaray and Agrawal| (2015) sur-
veyed the literature on gesture recognition. Several long-term research projects have
been funded to develop sign language technology, such as ViSiCAST @D, eS-
ign , SignCom , SIGNSPEAK , and Dicta-Sign @ . In
addition, there are several projects creating sign language datasets; in Sweden, the
SSL Corpus Project , in Germany, the DGS-Korpus dictionary project ,
and in the UK, the BSL Corpus Project .

4.1.2 Related Methods

Early work on SLR applied Artificial Neural Networks (ANN) for modeling isolated
signs. The idea of one of the first papers on SLR, (Murakami and Taguchil, [1991]),
was to train an ANN given the features from a DataGlove, (Kadous, 1996)), and
recognize isolated signs. In , the researchers used DataGloves and
Fuzzy Min-Max ANN to recognize 25 isolated gestures. The work in (Waldron and
@ presented an isolated SLR system using ANN, and [Huang and Huang
@ presented an SLR system using a Hopfield ANN. Hidden Markov Models
(HMM), (Rabiner} 1989} [Yamato et al. [1992)), are modeling techniques well suited
for the problem of SLR (Starner et al. [1998). |Grobel and Assan| (1997) presented
an isolated sign recognition system based on HMMs and [Vogler and Metaxas| (1997)
showed that word-level HMMs are SLR suitable. In their following work, (Vogler
land Metaxas|, [1999), they demonstrated that Parallel HMMs are superior to regular
HMMs, Factorial HMMs and Coupled HMMs for recognition of sign language. A
more detailed review of the literature on SLR is presented in Paper B. The method
developed in this study is based on HMMs because they are effective techniques for
modeling spatio-temporal information and achieved state-of-the-art results at the
time of the study. A short description of HMMs is presented next.

A time-domain process demonstrates a Markov property if the conditional prob-
ability density of the current event, given all present and past events, depends only
on the jth most recent event. If the current event depends solely on the most
recent past event, then the process is termed a first order Markov process. This
assumption is reasonable to make when considering the position/orientation of the
hands of a person through time. More specifically, an HMM is a double stochastic
process governed by,

e An underlying Markov chain with a finite number of states.

e A set of random functions associated with each state.
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In discrete time instants, the process is in one of the states and generates an
observation symbol according to a random function corresponding to that state.
Each transition between the states has a pair of probabilities defined as follows,

e Transition probability is the probability for undergoing a transition from one
state to another.

e Output probability is the conditional probability of emitting an output symbol
from a finite alphabet when the process is in a certain state.

The model is termed hidden because all that can be seen is a sequence of ob-
servations. An HMM is expressed as A = (A, B,II), where A is state transition
probability, B is observation symbol probability and II is initial state probabil-
ity. The generalized topology of an HMM is a fully connected structure, known
as the ergodic model, where any state can be reached from any other state. For
the recognition of isolated gestures, the goal is to predict the unknown class of an
observation sequence O into one of C classes. If we denote C different models (i.e.,
one per class) by A., 1 < ¢ < C, then an observation sequence O is classified to
class ¢ using,

¢ = argmax, o P(O|\.) (4.1)

4.2 Contributions

Previous Swedish Sign Language resources include the Swedish Sign Language Dic-
tionary with approximately 8000 video recorded signs (Mesch and Wallin, [2012]
Mesch et al} |2012). The main reason for recording a dataset instead of using the
existing resources is that the study needed the depth information to be included
in the recordings (RGB-D). This requirement stems from the real-time recognition
goal of the learning environment. RGB-D recordings further help with resolving
known issues related to hand tracking in video, such as different lighting, motion
blur, and cluttered backgrounds. In addition, in order to capture enough variability
for signer dependent as well as signer independent recognition, the study needed
each sign to be repeated many times by different signers.

The dataset described in Paper A is an essential part of the developed method.
The dataset captures 51 signs from the Swedish Sign Language (SSL) and the
vocabulary is composed of four sets: objects, colors, animals, and attributes. The
dataset has 2 parts: the first part captures experienced signers while the second
part, captures inexperienced signers. The first part is composed of 7 signers that are
experts in SSL (sign language researchers and /or teachers) and for six of them, SSL
is the first language. The second part of the dataset is composed of 10 signers that
have no prior experience in SSL. The recordings took place in a dedicated space but
the recording environment was not explicitly controlled, the only requirement was
that the upper body of the signer falls in the field of view of the RGB-D sensor. The
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recording setup is illustrated in Figure The signers were recorded performing
all 51 signs in one session; 5 sessions were recorded, resulting in 5 instances of
each sign per signer. In total, the dataset consists of 1785 sign instances for the
experienced signers and 2550 sign instances for the inexperienced signers.

et

Figure 4.1: Spatial configuration of the setup in the Swedish Sign Language dataset.
The dataset includes color, depth and body streams that are automatically seg-
mented and aligned during the recording.

The method developed in this study is based on HMMs and is described in
Paper B. In the developed method, the state index of the models transits from
left to right with time, as illustrated in Figure and the first and the last
states, s and x., are always non-emitting. Here the state transition probabilities
a;; = 01if j <7 and Z;\Ll a;; = 1. Having the models’ topology and the dataset
(i.e., the observation symbols are spatial representations of the trajectories of both
hands), we train an HMM for each sign (A.). When an unknown observation
sequence O is presented to the models, we calculate the likelihood P(O|\.) for
all 1 < ¢ < 51. Following Equation the model which yields the maximum
likelihood of observing the unknown sequence is selected by the method.
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Figure 4.2: Topology of an 8-state left-to-right (no state skipping) HMM developed
for modeling and recognition of isolated Swedish Sign Language signs.

The method is evaluated in two experiments: in a signer dependent experiment
using leave-one sign-out cross-validation procedure, and in a signer independent
experiment using leave-one signer-out cross-validation procedure (Section. The
mean accuracy of the method in signer independent mode is significantly lower than
in signer dependent: 57.9% (experienced signers) and 68.9% (inexperienced signers)
compared to 87.6% (experienced signers) and 90.3% (inexperienced signers). These
accuracy rates are however for the full set of 51 signs. In the learning environment,
the method needs to recognize one out of a small number of signs (e.g., one out
of five animals). For this type of limited recognition tasks, accuracy will increase
drastically since we can control the signs which are presented and make sure that
signs that are confused by the method never appear together.

The applicability of the developed environment as a learning tool has been
tested on a group of children (ages 10 — 11) with no prior sign language skills. This
study involved 38 children divided in two equal groups. Both groups played the
same sign language related computer games. The first group accomplished tasks
given by an avatar by performing isolate sign language signs, while the second
group accomplished the same tasks by mouse clicking. A week after the children
in both groups were asked to perform the signs they learned during the game-play.
The main hypothesis of the study was that the group of children who interacted
with the learning environment through signing will outperform the other group in
terms of recalling the signs and carrying them out. Statistical test on the collected
results confirmed the hypothesis (Potrus, [2017)). This result showed that computer
games that employ isolated signs as an interaction medium are a successful learning
environment that can support the acquisition of sign language skills.

In summary, the thesis has two main contributions with respect to hand gesture
recognition: 1) a newly collected dataset of isolated Swedish Sign Language signs,
and 2) a real-time hand gesture recognition method. This chapter presented the
importance of key word signing as method of augmented and alternative communi-
cation which motivated the development of a learning environment where children
can learn signs in a game-like setting. The method presented here is an important
component of that learning environment.
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Chapter 5

Speech Activity Detection

This chapter presents a study on the second topic addressed in the thesis: the
general problem of real-time speech activity detection in noisy and dynamic envi-
ronments and its application to socially-aware language acquisition. Speech activity
can also provide important information during human-robot interaction, for exam-
ple, the current active speaker’s hand gestures (Chapter [4)) and eye-gaze direction
or head orientation (Chapter @ can play an important role in understanding the
state of the interaction.

5.1 Background

The literature on language acquisition offers several theories of how infants learn
their first words. One of the main problems which researchers face in this field is
the problem of referential ambiguity as discussed in (Clerkin et al., |2016, [Pereira
et al., 2014, 'Yurovsky et al., 2013). Referential ambiguity stems from the idea that
infants must acquire language by linking heard words with perceived visual scenes,
in order to form word-referent mappings. In everyday life however, these visual
scenes are highly cluttered which results in many possible referents for any heard
word (Bloom,, [2000, |Quine et al.l |2013)). Many computational methods of language
acquisition are rooted in finding statistical associations between verbal descriptions
and the visual scene (Clerkin et al., 2016| |Rasdnen and Rasilol [2015, Roy and
Pentland}, 2002, 'Yu and Ballard,, 2004]), or in more interactive robotic manipulation
experiments (Salvi et al., 2012).

The literature on language acquisition does not consider how infants might
know which caregiver is talking and therefore requires attention. This observation
motivates the development of methods for inferring the active speaker in noisy and
dynamic environments. Such methods could support an artificial cognitive system
that attempts at acquiring language in similar manner as infants. Therefore, these
methods should be plausible from a developmental perspective: one of the main
implications is that the methods should not require manual annotations.
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5.1.1 Related Work

The study described in this chapter presents methods for speech activity detection
in social interactions. One of the mechanisms to cope with the problem of referen-
tial ambiguity is by using social signals related to the caregivers’ intent. Although
a word is heard in the context of many objects, infants may not treat the objects as
equally likely referents. Instead, infants can use other social signals to rule out con-
tenders to the named object.|Yu and Smith! (2016) used eye-tracking to record gaze
data from both caregivers and infants and found that when the caregiver visually
attended to the object to which infants’ attention was directed, infants extended
their duration of visual attention to that object, thus increasing the probability for
successful word-referent mapping. Furthermore, infants do not learn only from in-
teractions they are directly involved in, but also observe and attend to interactions
between their caregivers. Handl et al.| (2013) and |[Meng et al| (2017) performed
studies to examine how the body orientation can influence the infants’ gaze shifts.
The main conclusion was that static body orientation alone can function as a signal
for infants’ observations and guides their attention.

5.1.2 Related Methods

Speech activity detection is important for many applications and each area imposes
different constraints on the methods. Generally, there are two main approaches to
speech activity detection: audio-only and audio-visual.

Audio-only active speaker detection is the process of finding segments in the
input audio signal associated with different speakers. This type of detection is
known as speaker diarization. Speaker diarization has been studied extensively
and |Anguera et al.| (2012)) offered a comprehensive review of the research in this
field. Audio-visual speaker detection combines information from both the audio
and the video signals. The application of audio-visual synchronization to speaker
detection in broadcast videos was explored by (Nock et al., 2003). Unsupervised
audio-visual detection of the speaker in meetings was proposed in (Friedland et al.)
2009) and |Zhang et al.| (2008) presented a boosting-based multi-modal speaker
detection algorithm applied to distributed meetings. In more recent studies, a
multi-modal Long Short-Term Memory model that learns shared weights between
modalities was proposed in (Ren et al.,[2016) and Hu et al.|(2015) proposed a Con-
volutional Neural Network model that learns the fusion function of face and audio
information. A more detailed review of the literature on language acquisition and
speech activity detection is presented in Paper D. The methods developed in this
study are based on Perceptrons, Feedforward Artificial Neural Networks, Convo-
lutional Neural Networks, and Recurrent Neural Networks. A short description of
these methods is presented next.

A single artificial neuron (also called Perceptron) has the following mode of
operation: it computes a weighted sum of all of its inputs X, using a learnable
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weight vector W along with a learnable additive bias term, b. Then it potentially
applies a non-linearity o to the result,

h=o (i w;x; + b) (5.1)

In other words, an artificial neuron performs a dot product with the input and
its weights, adds a bias and applies a non-linearity, called an activation function.
Some choices for activation functions include,

1

e Logistic function: f(z) = ;=

eT_e~ %

et+e~ T

e Hyperbolic tangent: f(z) =
e Rectifier: f(z) = max(0,x)

It is possible to connect the outputs of artificial neurons to the inputs of other
artificial neurons, giving rise to Artificial Neural Networks (ANN). In a feedforward
ANN the neurons are typically organized in fully-connected layers, such that the
neurons in adjacent layers have full pair-wise connections, but neurons within a layer
are not connected. Feedforward ANNs receive an input through a fully-connected
input layer, and transform it through series of fully-connected hidden layers. The
last fully-connected layer is called the output layer and in classification mode it
represents the target class/label scores. One drawback of feedforward ANNs is that
they do not scale well to inputs like images.

Convolutional Neural Networks (CNN) make the explicit assumption that the
inputs are images. CNNs are very similar to feedforward ANNs: they are made up
of neurons that have learnable weights and biases and each neuron receives some
inputs, performs a dot product and optionally applies a non-linearity. There are
three main types of layers in CNNs: convolutional layer, pooling layer, and fully-
connected layer. Using these layers, CNNs transform the original image from pixel
values to the target class/label scores. CNNs take advantage of the fact that the
input consists of images to constrain the architecture; the main difference between
fully-connected and convolutional layers is that the neurons in a convolutional layer
are connected only to a local region in the input, and that many of them share
the learnable parameters. The main function of the pooling layer (periodically
inserted between successive convolutional layers) is to reduce the spatial size of the
representation.

Traditional artificial neural networks are memoryless; it is difficult for these
networks to use previous events to inform later ones. Recurrent Neural Networks
(RNN) is one approach (of many) to addresses this issue. This type of networks
have loops in them, allowing information to persist; the network looks at some input
x; at time t and outputs a value h;. The loops allow information to be passed from
one step of the network to the next. Long Short-Term Memory networks (LSTM)
are RNNs capable of learning long-term dependencies. RNNs have the form of a
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chain of repeating modules such as a single fully-connected layer. LSTMs also have
this chain like structure, but the repeating module consists of four fully-connected
layers that interact in a specific way. The key to LSTMs is a fully-connected layer
called the cell state; LSTMs have the ability to remove or add information to the
cell state, via process regulated by structures called gates, which are fully-connected
layers as well. An LSTM has three of these gates: forget, input, and output gate.

5.2 Contributions

For automatic language acquisition, the goal is to infer the possible objects the
active speaker is focusing attention on. In this context, assumptions such as known
sensor arrangement or participants’ position and number in the environment are
unrealistic, and should be avoided (these assumptions should be avoided in the
context of HRI as well). Therefore, the methods developed in this study have
several desirable characteristics for such types of scenarios, 1) they work in real-
time, 2) they do not assume specific spatial configuration (sensors and participants),
3) the number of possible (simultaneously) active speakers is free to change during
the interaction, and 4) no externally produced labels are required, but rather the
acoustic inputs are used as reference to the visually based learning.

Perceptual Inputs
Video Audio
Face Images ' Voice Activity | Labels
Detection Detection
Task Specific Learning: Training Prediction
Images
—
Stochastic CNN Perceptron Images CNN Features ™ pgrcantron Labels
Labels Optimization Model Model Model Model
Transfer Learning: Training Prediction
Images - Features
Model Stochastic Perceptron Images VGG16 Features Perceptron Labels
Labels Optimization Model Model Model
Dynamic Models: Training Prediction
Images CNN/VGG16 | Features
-M°dE' Stochastic STM Images CNN/VGG6 | Features STV Labels
Labels Optimization Model Model Model

Figure 5.1: Overview of the approaches to active speaker detection. In the top row
are the perceptual inputs and the way they are automatically modified before being
passed to the static (second row), transfer learning (third row) and dynamic (forth
row) methods.
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The dataset described in Paper E is an essential part of the developed meth-
ods. The dataset is described in Section where it is also used for analysis and
generation of eye-gaze direction or head orientation. The study discussed here
investigates a self-supervised learning approach to construct an active speaker de-
tector: the machine learning methods are supervised, but the labels are obtained
automatically from the auditory modality to learn detectors in the visual modality.
All detectors, illustrated in Figure[5.1] make use of data representations based on a
CNN and a following classifier. The study considers two types of classifiers: static
(Perceptron) and dynamic (LSTM). Additionally, two approaches to training are
considered: transfer learning that employs a pretrained CNN for data represen-
tation and only the classifier is trained, and task specific learning that employs
simultaneous training of the CNN for data representation and the classifier. The
incremental development of these ideas and methods is described in details in Pa-
per C and Paper D.

The methods are evaluated in three experiments: speaker dependent, multi-
speaker dependent, and speaker independent. The mean weighted accuracy (Sec-
tion of the methods in speaker independent mode is significantly lower than
in speaker dependent and multi-speaker dependent: 60.3% compared to 75.9% and
80.2%. The results of the multi-speaker dependent experiment show that the pro-
posed methods can scale beyond a single subject without decrease in performance.
Combining this observation with the shown applicability of transfer learning to
the task suggests that, the proposed methods can generalize to unseen perceptual
inputs by incorporating a model adaptation step for each new speaker.

In summary, the thesis has one main contribution with respect to speech activity
detection: a real-time vision-based speech activity detection method. This chapter
presented the importance of speech activity for socially-aware language acquisition
which motivated the development of the active speaker detection methods. The
methods presented here are a prerequisite for socially-aware language acquisition
and they can be seen as mechanisms for constraining the visual input thus helping
to resolve the referential ambiguity in dynamic visual scenes.

In face-to-face interaction people not only hear when someone is talking, but
they also see that person talking. This observation and the inherited difficulties of
audio-only speech activity detection in noisy and dynamic environments, is another
motivation for the developed methods. From an HRI perspective, the methods
could enable a robot to see which of its interlocutors is talking. Furthermore, there
has been little work on the question of whom (or what) to follow during face-
to-face human-robot interaction. This study proposes one way to addresses this
question. Our hypothesis was that speech activity is one of the predictors of a
perceiver worth following during interactions. This hypothesis was confirmed in an
experiment described in Paper F and discussed in Section
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Chapter 6

Eye-Gaze Analysis and (Generation

The third topic addressed in the thesis is the real-time generation of eye-gaze direc-
tion or head orientation and its application to human-robot interaction. Eye-gaze
direction or head orientation can provide important cues during human-robot in-
teraction, for example, it can regulate who is allowed to speak when and coordinate
the changes in the roles on the conversational floor (Section [2.2)).

6.1 Background

Gaze patterns related to regulating the interaction are generally unconscious (Ar-
gyle and Grahaml (1976, [Kendonl |1967, [Vertegaal et al., [2001). It is also important
to consider environmental factors when trying to model gaze under varying con-
texts, as it is otherwise impossible to make any universal judgments (Peters et al.,
2010). While there are some patterns that hold more globally, it has been found
that many gaze patterns vary substantially from one pair to the next (Cummins,
2012). It has also been found that, gaze coordination is related to factors such as
established common ground and mutual knowledge (Shockley et al., [2009). An-
other interesting finding is that speakers and listeners are different with regards to
their gaze patterns. While listeners gaze at speakers for long periods of time, the
speakers gaze at listeners in short but frequent periods (Argyle and Cook, [1976]).

Since, clear conversational roles in face-to-face communication are vital for
smooth and effective interaction, a robot which is aware of the established roles
could avoid misunderstandings or talking over its interlocutors. On one hand, most
of the research on gaze in conversational settings has been carried out on dyadic
interactions. On the other, research on gaze in multiparty settings usually de-
velops rule-based methods for gaze generation. These observations motivate the
development of data-driven methods for generation of gaze for a robot involved in
multiparty interactions.
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6.1.1 Related Work

The study described in this chapter presents methods for generating candidate
gaze targets in multiparty interactions. There are three main approaches to gen-
erating social gaze: biologically-inspired, data-driven, and heuristic (Admoni and
Scassellati, [2017)). Biologically inspired approaches are either mimicking bottom-up
neurological responses to the visual input from the environment or are top-down
cognitive architectures that derive context to detect visual saliency. Humans have
the ability to rapidly orient their attention to visually salient locations and only a
small fraction of humans’ visual input is registered and processed (Itti and Koch)
2000). Several researchers have computationally described and modeled aspects of
visual attention and saliency (Borji and Itti, [2013, [Frintrop et al., 2010l [Itti and
Koch| [2001)).

Heuristic approaches design rule-based methods that use observations from hu-
man interactions in order to mimic visual attention behavior. Some studies have
tested heuristic methods in dyadic human interactions. The study in (Zhang et al.,
2017) described an interactive gaze method implemented on a humanoid robot.
The system’s usability for establishing mutual gaze with a user was also tested. [Pe-
ters et al.| (2005]) presented a method for an embodied conversational agent able to
establish, maintain and end the conversation based on its perception of the level of
interest of its interlocutor. In this work the speaker and the listener were modeled
separately. Heuristic methods have also been proposed in multiparty interactions.
The study in (Bennewitz et al.| [2005) presented a humanoid museum guide robot.
The proposed system was able to interact with people in multiparty scenarios using
attention shifts among other modalities.

6.1.2 Related Methods

This chapter presents a study on data-driven methods for generation of candidate
gaze targets in multiparty interactions. Data-driven approaches model behavioral
aspects of gaze in human conversations with empirical measurements such as gaze
timings, frequencies and locations. The model parameters are typically extracted by
analyzing video data of human dyadic interactions. The studies in (Andrist et al.,
2013) and (Andrist et all [2014) proposed computational methods for generation of
gaze aversions in relation to conversational functions and speech.[Admoni and Scas-
sellati| (2014) presented a computational method for generation of robot nonverbal
behavior. The method can be both predictive (by recognizing the context of new
nonverbal behaviors) and generative (by creating new nonverbal behavior based on
the desired context). A more detailed review of the literature on approaches to
generating gaze is presented in Paper F. The methods developed in this study are
based on Feedforward Artificial Neural Networks and Recurrent Neural Networks.
A short description of these methods is presented Section [5.1
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6.2 Contributions

The methods developed in this study model the eye-gaze direction and head orien-
tation of a person in three-party open-world dialogues, (Bohus and Horvitz, 2010)),
as a function of low-level multimodal signals generated by the interlocutors. These
signals include, speech activity, eye-gaze direction and head orientation which can
be automatically estimated during the interaction.

The dataset described in Paper E is an essential part of the development
of the methods. The dataset involves multiparty human-robot interactions based
around objects, multiparty human-human interactions based around the same ob-
jects, and multiparty human-human open-world dialogues. The primary purpose
of the dataset is to serve as a source for modeling visual attention patterns for
robots interacting with humans, but the richness of the dataset also makes it use-
ful for other studies (Paper C and Paper D). In total 15, ~30-minute sessions
were recorded, resulting in ~7.5 hours of data. Three participants took part in each
recording session where a pair of participants was new in every session, and one par-
ticipant took the role of moderator for all sessions. All interactions were in English
and all data streams were spatially and temporally synchronized and aligned. All
interactions occurred around a round interactive surface and the participants were
seated. There were 23 unique participants and 1 moderator. Figure illustrates
the spatial configuration of the setup.

Figure 6.1: Spatial configuration of the setup in the multiparty interaction dataset.
The dataset includes audio, color, depth, infrared, body, face, eyes, touch and robot
streams and is semi-automatically aligned and synchronized during the recording.
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A raw three-dimensional representation of the eye-gaze direction or head orien-
tation does not capture the dynamic relation between the candidate gaze targets
and the current spatial state of the interaction. One of the contributions of this
study (Paper F) is data representations suitable for modeling spatial relations in
the context of multiparty open-world dialogues. The study proposes two types of
data representation: continuous and discrete.

(a) Horizontal. (b) Vertical.

Figure 6.2: Continuous and active data representation (for simplicity, only the eye-
gaze directions are drawn). In the figures M is the person being modeled. The
azimuthal angles of the eye-gaze directions or head orientations of M that pass
through the current position of A (interlocutor A) and B (interlocutor B) are used
to create a data representation interval [—0.5,0.5] for the azimuthal angles. The
polar angles of the eye-gaze directions or head orientations of M that pass through
C (the current mean position of A and B) and the position of T' (a static object)
are used to create a data representation interval [—0.5,0.5] for the polar angles.
Both data representation intervals are dynamically extended to [—1,1] based on
the current position of A and B. Then, the current state of the interaction from
the perspective of M is expressed in terms of: M’s eye-gaze direction or head
orientation. This process of encoding is used to encode the current state of the
interaction from the perspective of all participants.
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Within the continuous data representation the study considers two cases: pas-
sive and active. The passive case uses the human visual field as a reference frame
for data representation (Walker et al., [1990)). The active case uses the current po-
sition of the two interlocutors as a reference frame for data representation. This
later case is illustrated in Figure A more detailed description of the continuous
approaches to data representation is presented in Paper F.

0 0
3 3
0 4 2 0 0 4 2 0
5 5
0 0
(a) Interlocutor A. (b) Interlocutor B.

Figure 6.3: Discrete and simple data representation. As seen from the perspective
of M, given the current position of interlocutor A, a grid centered at interlocutor A
is defined. The grid is defined in such a way that it partitions the space around the
position of interlocutor A into 5 regions. The same type of partitioning is applied
to interlocutor B. The regions (one for interlocutor A and one for interlocutor B)
intersected by the current eye-gaze direction or head orientation of M are used
as encoding. This process of encoding is used to encode the current state of the
interaction from the perspective of all participants.

Within the discrete data representation the study considers two cases: complex
and simple. The complex case partitions the space around the two interlocutors
into 42 (+1) regions while the simple case partitions the space around the two
interlocutors into 10 (41) regions. This later case is illustrated in Figure
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A more detailed description of the discrete approaches to data representation is
presented in Paper F.

The study discussed here investigates a supervised learning approach for gen-
eration of candidate targets for eye-gaze direction or head orientation. The study
considers two types of methods: static (ANN, Section and dynamic (LSTM,
Section performing both classification and regression tasks. In the case of dis-
crete data representation, the goal of the classifier (ANN or LSTM) is to predict the
most likely regions (one per interlocutor) for eye-gaze direction or head orientation.
In the case of continuous data representation, the goal of the regressor (ANN or
LSTM) is to estimate the azimuthal and polar angles for eye-gaze direction or head
orientation. The methods are evaluated in one experiment: subject dependent (Sec-
tion . This study also uses a second dataset described in (Kontogiorgos et al.,
2018)), which is similar to the dataset described in Paper E. Therefore, the study
presents a subject dependent experiment for both moderators, for short, moderator
A (Paper E) and moderator B (Kontogiorgos et al., |2018).

For the continuous and passive representations and for both moderators, the
methods reach the lowest mean absolute error (the best is 0°, Section when
estimating the moderator’s head orientation using the head orientation of the inter-
locutors and the speech activity as input: ~9° and ~13° for the azimuthal angle,
and ~3° and ~7° for the polar angle, for moderator A and B, respectively. For the
continuous and active representations and for both moderators the methods reach
the lowest error when estimating the moderator’s head orientation using the head
orientation of the interlocutors and the speech activity as input: ~9° and ~13° for
the azimuthal angle, and ~5° and ~7° for the polar angle, for moderator A and B,
respectively.

For the discrete and complex representations and for both moderators the meth-
ods reach the highest accuracy (the best is 1, Section when estimating the
moderator’s head orientation using the head orientation of the interlocutors and
the speech activity as input: 0.71 and 0.75 for interlocutor A, and 0.40 and 0.61 for
interlocutor B, for moderator A and B, respectively. For the discrete and simple
representations and for moderator A the methods reach the highest accuracy when
estimating the moderator’s head orientation using the head orientation of the in-
terlocutors and the speech activity as input: 0.98 and 0.84 for interlocutor A and
B, respectively. For moderator B the methods reach the highest accuracy when
estimating the moderator’s eye-gaze direction using the eye-gaze direction of the
interlocutors and the speech activity as input: 0.97 and 0.95 for interlocutor A and
B, respectively.

In summary, the thesis has two main contributions with respect to generation of
eye-gaze direction or head orientation: 1) a newly collected dataset of face-to-face
interactions, and 2) a real-time eye-gaze direction or head orientation generation
method. The main finding of the study is that the used descriptors are good
predictors for eye-gaze direction or head orientation when the moderators are in a
listening state. When the moderators are in a speaking state, the used descriptors
are not sufficient since they do not encode the moderators’ intentions. In addition,
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the results from the study clearly show that a candidate gaze targets generation
method that takes into account the speech activity significantly outperforms one
which does not use this information. This result further motivates the methods for
speech activity detection described in Chapter [5}
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Chapter 7

Conclusions

This thesis comes in the pursuit of the ultimate goal of building autonomous socially
intelligent artificial systems that are able to interact with humans in a natural and
effective way. Such systems need to recognize and generate the subtle, rich and
multimodal communicative signals that complement the stream of words — the
communicative signals humans typically use when interacting with each other. The
studies included in this thesis, propose, develop and evaluate methods for real-time
recognition and generation of such communicative signals.

The work in Paper A and Paper B addresses the problem of real-time recogni-
tion of hand gestures and its application to the recognition of isolated sign language
signs. This work includes the collection of a new dataset of isolated Swedish Sign
Language signs and development of new a recognition method. The developed
method is an important component of a learning environment that employs iso-
lated sign language signs as an interaction modality. The conducted user study
investigates the applicability of the learning environment as a learning tool for a
group of children with no prior sign language skills. The result of the study shows
that the learning environment can support the acquisition of sign language skills.

The work in Paper C and Paper D addresses the problem of real-time speech
activity detection in noisy and dynamic environments and its application to socially-
aware language acquisition. This work includes the incremental development of
new speech activity detection methods. The developed methods attempt to limit
the assumptions about the interaction environment to a minimum by not assuming
specific spatial configuration and specific number of possible (simultaneously) active
speakers. Furthermore, the methods are plausible from a developmental perspective
because they do not require manual annotations. These methods could be an
important component of any artificial system that engages in social interactions
with humans.

The work in Paper E and Paper F addresses the problem of real-time gen-
eration of eye-gaze direction or head orientation and its application to human-
robot interaction. This work includes the collection of a new dataset of face-to-face
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human-human and human-robot interactions and the development of new a eye-
gaze direction and head orientation generation methods. Since eye-gaze direction
and head orientation have important functions in human-human interactions such
as regulating the changes in the roles on the conversational floor, the developed
methods could also play an important role in any artificial system that engages in
social interactions with humans.

There are numerous directions for future work. Although single communicative
signal can play an important function in face-to-face interactions, more typically
this function is composed of groups of communicative signals that interact to create
communicative impact. Therefore, an obvious direction for future work is unifying
the methods described in this thesis into the perception and generation modules
of an artificial system and let them interact. In turn, such system can have a
wide range of applicability, including social robotics for healthcare, education and
entertainment. Alternatively, the methods presented here are only one attempt at
modeling very complex communicative signals that are influenced by the context,
among others, in which they occur. This motivates further investigation of these
signals under different context and using different modeling approaches.
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